Exceptional set for sums of unlike powers of primes (II)

被引:0
|
作者
Min Zhang
Jinjiang Li
机构
[1] Beijing Information Science and Technology University,School of Applied Science
[2] China University of Mining and Technology,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Waring–Goldbach problem; Circle method; Exceptional set; 11P05; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a sufficiently large integer. In this paper, it is proved that, with at most O(N7/18+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^{7/18+\varepsilon })$$\end{document} exceptions, all even positive integers up to N can be represented in the form p12+p22+p33+p43+p54+p64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$$\end{document}, where p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document} are prime numbers, which constitutes an improvement over some previous work.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 50 条
  • [21] Sums of powers of primes
    Jane Gerard
    Lawrence C. Washington
    The Ramanujan Journal, 2018, 45 : 171 - 180
  • [22] Sums of powers of primes
    Gerard, Jane
    Washington, Lawrence C.
    RAMANUJAN JOURNAL, 2018, 45 (01): : 171 - 180
  • [23] EQUAL SUMS OF UNLIKE POWERS
    LANDER, LJ
    FIBONACCI QUARTERLY, 1990, 28 (02): : 141 - 150
  • [24] A note on the exceptional set for Diophantine approximation with mixed powers of primes
    Quanwu Mu
    Zhipeng Gao
    The Ramanujan Journal, 2023, 60 : 551 - 570
  • [25] A note on the exceptional set for Diophantine approximation with mixed powers of primes
    Mu, Quanwu
    Gao, Zhipeng
    RAMANUJAN JOURNAL, 2023, 60 (02): : 551 - 570
  • [26] Diophantine inequality by unlike powers of primes
    Zhu, Li
    RAMANUJAN JOURNAL, 2020, 51 (02): : 307 - 318
  • [27] Diophantine approximation by unlike powers of primes
    Liu, Zhixin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (09) : 2445 - 2452
  • [28] On Diophantine approximation by unlike powers of primes
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    OPEN MATHEMATICS, 2019, 17 : 544 - 555
  • [29] Diophantine inequality by unlike powers of primes
    Li Zhu
    The Ramanujan Journal, 2020, 51 : 307 - 318
  • [30] A Diophantine Problem with Unlike Powers of Primes
    Mu, Quanwu
    Xi, Liyan
    JOURNAL OF MATHEMATICS, 2021, 2021