More bounds for the Grundy number of graphs

被引:0
|
作者
Zixing Tang
Baoyindureng Wu
Lin Hu
Manoucheher Zaker
机构
[1] Xinjiang University,College of Mathematics and System Sciences
[2] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
关键词
Grundy number; Chromatic number; Clique number; Coloring number; Randić index;
D O I
暂无
中图分类号
学科分类号
摘要
A coloring of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a partition {V1,V2,…,Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{V_1, V_2, \ldots , V_k\}$$\end{document} of V into independent sets or color classes. A vertex v∈Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_i$$\end{document} is a Grundy vertex if it is adjacent to at least one vertex in each color class Vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_j$$\end{document} for every j<i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j<i$$\end{document}. A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number Γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)$$\end{document} of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a {P4,C4}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_{4}, C_4\}$$\end{document}-free graph by supporting a conjecture of Zaker, which says that Γ(G)≥δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)\ge \delta (G)+1$$\end{document} for any C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}-free graph G.
引用
下载
收藏
页码:580 / 589
页数:9
相关论文
共 50 条
  • [41] UPPER BOUNDS ON THE SEMITOTAL FORCING NUMBER OF GRAPHS
    Liang, Yi-Ping
    Chen, Jie
    Xu, Shou-Jun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 177 - 185
  • [42] Lower Bounds on the Number of Realizations of Rigid Graphs
    Grasegger, Georg
    Koutschan, Christoph
    Tsigaridas, Elias
    EXPERIMENTAL MATHEMATICS, 2020, 29 (02) : 125 - 136
  • [43] BOUNDS FOR GENUS OF GRAPHS WITH GIVEN BETTI NUMBER
    MILGRAM, M
    UNGAR, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) : 227 - 233
  • [44] Upper bounds of proper connection number of graphs
    Fei Huang
    Xueliang Li
    Shujing Wang
    Journal of Combinatorial Optimization, 2017, 34 : 165 - 173
  • [45] Bounds of the 2-domination number of graphs
    Blidia, Mostafa
    Chellali, Mustapha
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2006, 71 : 209 - 216
  • [46] Lower Bounds on the Chromatic Number of Random Graphs
    Ayre, Peter
    Coja-Oghlan, Amin
    Greenhill, Catherine
    COMBINATORICA, 2022, 42 (05) : 617 - 658
  • [47] Bounds for the chromatic number of graphs with partial information
    Coffman, WC
    Hakimi, SL
    Schmeichel, E
    DISCRETE MATHEMATICS, 2003, 263 (1-3) : 47 - 59
  • [48] Upper bounds for the number of spanning trees of graphs
    Ş Burcu Bozkurt
    Journal of Inequalities and Applications, 2012
  • [49] Some bounds on the injective chromatic number of graphs
    Doyon, Alain
    Hahn, Gena
    Raspaud, Andre
    DISCRETE MATHEMATICS, 2010, 310 (03) : 585 - 590
  • [50] Upper bounds for the number of spanning trees of graphs
    Bozkurt, S. Burcu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,