More bounds for the Grundy number of graphs

被引:0
|
作者
Zixing Tang
Baoyindureng Wu
Lin Hu
Manoucheher Zaker
机构
[1] Xinjiang University,College of Mathematics and System Sciences
[2] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
关键词
Grundy number; Chromatic number; Clique number; Coloring number; Randić index;
D O I
暂无
中图分类号
学科分类号
摘要
A coloring of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a partition {V1,V2,…,Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{V_1, V_2, \ldots , V_k\}$$\end{document} of V into independent sets or color classes. A vertex v∈Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_i$$\end{document} is a Grundy vertex if it is adjacent to at least one vertex in each color class Vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_j$$\end{document} for every j<i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j<i$$\end{document}. A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number Γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)$$\end{document} of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a {P4,C4}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_{4}, C_4\}$$\end{document}-free graph by supporting a conjecture of Zaker, which says that Γ(G)≥δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)\ge \delta (G)+1$$\end{document} for any C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}-free graph G.
引用
下载
收藏
页码:580 / 589
页数:9
相关论文
共 50 条
  • [31] Some comparative results concerning the Grundy and b-chromatic number of graphs
    Masih, Zoya
    Zaker, Manouchehr
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 1 - 6
  • [32] On Grundy and b-Chromatic Number of Some Families of Graphs: A Comparative Study
    Masih, Zoya
    Zaker, Manouchehr
    GRAPHS AND COMBINATORICS, 2021, 37 (02) : 605 - 620
  • [33] On the Grundy Number of a Graph
    Havet, Frederic
    Sampaio, Leonardo
    PARAMETERIZED AND EXACT COMPUTATION, 2010, 6478 : 170 - 179
  • [34] On the family of r-regular graphs with Grundy number r+1
    Gastineau, Nicolas
    Kheddouci, Hamamache
    Togni, Olivier
    DISCRETE MATHEMATICS, 2014, 328 : 5 - 15
  • [35] The game Grundy indices of graphs
    Wenchao Zhang
    Xuding Zhu
    Journal of Combinatorial Optimization, 2015, 30 : 596 - 611
  • [36] Some bounds for the captive domination number of graphs
    Shaveisi, Farzad
    Moshtagh, Hossein
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [37] Bounds on domination number of complete grid graphs
    Chérifi, R
    Gravier, S
    Zighem, I
    ARS COMBINATORIA, 2001, 60 : 307 - 311
  • [38] New bounds on the independence number of connected graphs
    Rad, Nader Jafari
    Sharifi, Elahe
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (05)
  • [39] Bounds on the edge magic number for complete graphs
    Armstrong, Addie
    Smith, Jacob
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 109 : 79 - 103
  • [40] Bounds on the Bend Number of Split and Cocomparability Graphs
    Chakraborty, Dibyayan
    Das, Sandip
    Mukherjee, Joydeep
    Sahoo, Uma Kant
    THEORY OF COMPUTING SYSTEMS, 2019, 63 (06) : 1336 - 1357