More bounds for the Grundy number of graphs

被引:0
|
作者
Zixing Tang
Baoyindureng Wu
Lin Hu
Manoucheher Zaker
机构
[1] Xinjiang University,College of Mathematics and System Sciences
[2] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
关键词
Grundy number; Chromatic number; Clique number; Coloring number; Randić index;
D O I
暂无
中图分类号
学科分类号
摘要
A coloring of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is a partition {V1,V2,…,Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{V_1, V_2, \ldots , V_k\}$$\end{document} of V into independent sets or color classes. A vertex v∈Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_i$$\end{document} is a Grundy vertex if it is adjacent to at least one vertex in each color class Vj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_j$$\end{document} for every j<i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j<i$$\end{document}. A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number Γ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)$$\end{document} of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a {P4,C4}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_{4}, C_4\}$$\end{document}-free graph by supporting a conjecture of Zaker, which says that Γ(G)≥δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (G)\ge \delta (G)+1$$\end{document} for any C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}-free graph G.
引用
下载
收藏
页码:580 / 589
页数:9
相关论文
共 50 条
  • [1] More bounds for the Grundy number of graphs
    Tang, Zixing
    Wu, Baoyindureng
    Hu, Lin
    Zaker, Manoucheher
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (02) : 580 - 589
  • [2] New Bounds on the Grundy Number of Products of Graphs
    Campos, Victor
    Gyarfas, Andras
    Havet, Frederic
    Sales, Claudia Linhares
    Maffray, Frederic
    JOURNAL OF GRAPH THEORY, 2012, 71 (01) : 78 - 88
  • [3] Bounds for the Grundy chromatic number of graphs in terms of domination number
    Khaleghi, Abbas
    Zaker, Manouchehr
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (02) : 193 - 206
  • [4] Bounds for the Grundy chromatic number of graphs in terms of domination number
    Khaleghi, Abbas
    Zaker, Manouchehr
    arXiv, 2022,
  • [5] The game Grundy number of graphs
    Havet, Frederic
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 752 - 765
  • [6] Grundy number and products of graphs
    Aste, Marie
    Havet, Frederic
    Linhares-Sales, Claudia
    DISCRETE MATHEMATICS, 2010, 310 (09) : 1482 - 1490
  • [7] The game Grundy number of graphs
    Frédéric Havet
    Xuding Zhu
    Journal of Combinatorial Optimization, 2013, 25 : 752 - 765
  • [8] Inequalities for the Grundy chromatic number of graphs
    Zaker, Manouchehr
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2567 - 2572
  • [9] Results on the Grundy chromatic number of graphs
    Zaker, Manouchehr
    DISCRETE MATHEMATICS, 2006, 306 (23) : 3166 - 3173
  • [10] Spectral upper bounds for the Grundy number of a graph
    Assis, Thiago
    Coutinho, Gabriel
    Juliano, Emanuel
    arXiv,