UPPER BOUNDS ON THE SEMITOTAL FORCING NUMBER OF GRAPHS

被引:0
|
作者
Liang, Yi-Ping [1 ]
Chen, Jie [1 ]
Xu, Shou-Jun [1 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
semitotal forcing number; NP-complete; extremal graph; upper bound;
D O I
10.1017/S000497272300045X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with no isolated vertex. A semitotal forcing set of G is a (zero) forcing set S such that every vertex in S is within distance 2 of another vertex of S. The semitotal forcing number F-t2(G) is the minimum cardinality of a semitotal forcing set in G. In this paper, we prove that it is NP-complete to determine the semitotal forcing number of a graph. We also prove that if G ? K(n )is a connected graph of order n = 4 with maximum degree ? = 2, then F-t2(G) = (? - 1)n/?, with equality if and only if either G = C(4)or G = P(4)or G = K-?,K-?.
引用
收藏
页码:177 / 185
页数:9
相关论文
共 50 条
  • [1] On the Semitotal Forcing Number of a Graph
    Qin Chen
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1409 - 1424
  • [2] On the Semitotal Forcing Number of a Graph
    Chen, Qin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1409 - 1424
  • [3] Bounds on the forcing domination number of graphs
    Karami, H.
    Sheikholeslami, S. M.
    Toomanian, M.
    UTILITAS MATHEMATICA, 2010, 83 : 171 - 178
  • [4] SEMITOTAL FORCING IN CLAW-FREE CUBIC GRAPHS
    Liang, Yi-ping
    Chen, Jie
    Xu, Shou-jun
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1373 - 1393
  • [5] On the semitotal domination number of line graphs
    Zhu, Enqiang
    Liu, Chanjuan
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 295 - 298
  • [6] Upper bounds on the k-forcing number of a graph
    Amos, David
    Caro, Yair
    Davila, Randy
    Pepper, Ryan
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 1 - 10
  • [7] Upper bounds of proper connection number of graphs
    Fei Huang
    Xueliang Li
    Shujing Wang
    Journal of Combinatorial Optimization, 2017, 34 : 165 - 173
  • [8] Upper bounds for the number of spanning trees of graphs
    Ş Burcu Bozkurt
    Journal of Inequalities and Applications, 2012
  • [9] Upper bounds for the number of spanning trees of graphs
    Bozkurt, S. Burcu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [10] Upper bounds of proper connection number of graphs
    Huang, Fei
    Li, Xueliang
    Wang, Shujing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (01) : 165 - 173