Development of Ultra-Low-Noise TES Bolometer Arrays

被引:0
|
作者
T. Suzuki
P. Khosropanah
M. L. Ridder
R. A. Hijmering
J. R. Gao
H. Akamatsu
L. Gottardi
J. van der Kuur
B. D. Jackson
机构
[1] Institute of Space and Astronautical Science (ISAS)/JAXA,Kavli Institute of NanoScience
[2] SRON Netherlands Institute for Space Research,undefined
[3] Delft University of Technology,undefined
来源
关键词
Transition edge sensor; TES; Far-infrared spectrometer; SiN membrane; Cryogenic detectors; THz detectors; Deep reactive-ion etching; DRIE;
D O I
暂无
中图分类号
学科分类号
摘要
SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner (<0.25μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}0.25~\upmu \hbox {m}$$\end{document}) and narrower (<1μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\upmu \hbox {m}$$\end{document}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0.20~\upmu \hbox {m}$$\end{document}), narrow (0.5–0.7 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}), and long (340–460 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}) SiN legs and show Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm {c}}$$\end{document} of ∼93mK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }93~\hbox {mK}$$\end{document} and Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm {n}}$$\end{document} of ∼158mΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }158~\hbox {m}{\Omega }$$\end{document}. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1–3 MHz) system. TESs without the absorber show NEPs as low as 1.1×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document} with a reasonable response speed (<1ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\hbox {ms}$$\end{document}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher NEPel(∼5×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NEP}_{\mathrm {el}} ({\sim }5\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.
引用
收藏
页码:52 / 59
页数:7
相关论文
共 50 条
  • [41] Ultra-low-noise microwave to optics conversion in gallium phosphide
    Robert Stockill
    Moritz Forsch
    Frederick Hijazi
    Grégoire Beaudoin
    Konstantinos Pantzas
    Isabelle Sagnes
    Rémy Braive
    Simon Gröblacher
    Nature Communications, 13
  • [42] Noise-aware design methodology of ultra-low-noise transimpedance amplifiers
    Mohamed, Ayman
    Djekic, Denis
    Baumgaertner, Lars
    Anders, Jens
    2021 28TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (IEEE ICECS 2021), 2021,
  • [43] Ultra-low-noise amplifier for ultra-low-field MRI main field and gradients
    Zevenhoven, Koos C. J.
    Alanko, Sarianna
    11TH EUROPEAN CONFERENCE ON APPLIED SUPERCONDUCTIVITY (EUCAS2013), PTS 1-4, 2014, 507
  • [44] Ultra-low-noise microwave oscillator with advanced phase noise suppression system
    Ivanov, EN
    Tobar, ME
    Woode, RA
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1996, 6 (09): : 312 - 314
  • [45] Development of TES Bolometer Camera for ASTE Telescope: II. Performance of Detector Arrays
    Hirota, Akihiko
    Westbrook, Ben
    Suzuki, Kenta
    Izumi, Takuma
    Takekoshi, Tatsuya
    Sato, Tatsuhiro
    Oshima, Tai
    Minamidani, Tetsuhiro
    Kawamura, Masayuki
    Suzuki, Aritoki
    Lee, Adrian T.
    Holzapfel, William L.
    Kohno, Kotaro
    Kawabe, Ryohei
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [46] ULTRA-LOW-NOISE CRYOGENIC HIGH-ELECTRON-MOBILITY TRANSISTORS
    DUH, KHG
    POSPIESZALSKI, MW
    KOPP, WF
    HO, P
    JABRA, AA
    CHAO, PC
    SMITH, PM
    LESTER, LF
    BALLINGALL, JM
    WEINREB, S
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1988, 35 (03) : 249 - 256
  • [47] ULTRA-LOW-NOISE MILLIMETER-WAVE PSEUDOMORPHIC HEMTS
    LEE, RE
    BEAUBIEN, RS
    NORTON, RH
    BACON, JW
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1989, 37 (12) : 2086 - 2092
  • [48] ULTRA-LOW-NOISE TUNNEL JUNCTION DC-SQUID
    KETCHEN, MB
    VOSS, RF
    APPLIED PHYSICS LETTERS, 1979, 35 (10) : 812 - 815
  • [49] Ultra-low-noise magnetic sensing with long Josephson tunnel junctions
    Monaco, Roberto
    Granata, Carmine
    Russo, Roberto
    Vettoliere, Antonio
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2013, 26 (12):
  • [50] Ultra-Low-Noise Seismic Piezoelectric Accelerometer With Integral FET Amplifier
    Levinzon, Felix A.
    IEEE SENSORS JOURNAL, 2012, 12 (06) : 2262 - 2268