Development of Ultra-Low-Noise TES Bolometer Arrays

被引:0
|
作者
T. Suzuki
P. Khosropanah
M. L. Ridder
R. A. Hijmering
J. R. Gao
H. Akamatsu
L. Gottardi
J. van der Kuur
B. D. Jackson
机构
[1] Institute of Space and Astronautical Science (ISAS)/JAXA,Kavli Institute of NanoScience
[2] SRON Netherlands Institute for Space Research,undefined
[3] Delft University of Technology,undefined
来源
关键词
Transition edge sensor; TES; Far-infrared spectrometer; SiN membrane; Cryogenic detectors; THz detectors; Deep reactive-ion etching; DRIE;
D O I
暂无
中图分类号
学科分类号
摘要
SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner (<0.25μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}0.25~\upmu \hbox {m}$$\end{document}) and narrower (<1μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\upmu \hbox {m}$$\end{document}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0.20~\upmu \hbox {m}$$\end{document}), narrow (0.5–0.7 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}), and long (340–460 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}) SiN legs and show Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm {c}}$$\end{document} of ∼93mK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }93~\hbox {mK}$$\end{document} and Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm {n}}$$\end{document} of ∼158mΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }158~\hbox {m}{\Omega }$$\end{document}. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1–3 MHz) system. TESs without the absorber show NEPs as low as 1.1×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document} with a reasonable response speed (<1ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\hbox {ms}$$\end{document}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher NEPel(∼5×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NEP}_{\mathrm {el}} ({\sim }5\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.
引用
收藏
页码:52 / 59
页数:7
相关论文
共 50 条
  • [11] Development of Space-Optimized TES Bolometer Arrays for LiteBIRD
    Jaehnig, G. C.
    Arnold, K.
    Austermann, J.
    Becker, D.
    Duff, S.
    Halverson, N. W.
    Hazumi, M.
    Hilton, G.
    Hubmayr, J.
    Lee, A. T.
    Link, M.
    Suzuki, A.
    Vissers, M.
    Walker, S.
    Westbrook, B.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) : 646 - 653
  • [12] ULTRA-LOW-NOISE 100 GHZ RECEIVER BASED ON PARALLEL BIASED SIS ARRAYS
    SHITOV, SV
    KOSHELETS, VP
    KOVTONYUK, SA
    ERMAKOV, AB
    WHYBORN, ND
    LINDSTROM, CO
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1991, 4 (09): : 406 - 408
  • [13] ULTRA-LOW-NOISE AMPLIFIERS AND GRANULARITY DISTORTION
    SELF, DRG
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 1987, 35 (11): : 907 - 915
  • [14] Ultra-Low-Noise Regenerative Frequency Divider
    Hati, Archita
    Nelson, Craig W.
    Barnes, Corey
    Lirette, Danielle
    DeSalvo, Jason A.
    Howe, David A.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (11) : 2596 - 2598
  • [15] Ultra-low-noise preamplifier for condenser microphones
    Starecki, Tomasz
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (12):
  • [16] Cryogenic ultra-low-noise SiGe transistor amplifier
    Ivanov, B. I.
    Trgala, M.
    Grajcar, M.
    Il'ichev, E.
    Meyer, H. -G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (10):
  • [17] ULTRA-LOW-NOISE AMPLIFIERS AND GRANULARITY DISTORTION.
    Self, D.R.G.
    1600, (35):
  • [18] Crystalline coatings for ultra-low-noise optical cavities
    Cole, Garrett D.
    Zhang, Wei
    Martin, Michael J.
    Ye, Jun
    Aspelmeyer, Markus
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [19] Generation of ultra-low-noise optical parametric combs
    Kuo, Ping. P.
    Radic, Stojan
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS XV, 2016, 9731
  • [20] CRYOTRON AS AN ULTRA-LOW-NOISE AMPLIFIER ELIMINATION OF EXCESSIVE CRYOTRON NOISE
    JOHNSON, AK
    CHIRLIAN, PM
    IEEE TRANSACTIONS ON MAGNETICS, 1966, MAG2 (03) : 390 - +