Development of Ultra-Low-Noise TES Bolometer Arrays

被引:0
|
作者
T. Suzuki
P. Khosropanah
M. L. Ridder
R. A. Hijmering
J. R. Gao
H. Akamatsu
L. Gottardi
J. van der Kuur
B. D. Jackson
机构
[1] Institute of Space and Astronautical Science (ISAS)/JAXA,Kavli Institute of NanoScience
[2] SRON Netherlands Institute for Space Research,undefined
[3] Delft University of Technology,undefined
来源
关键词
Transition edge sensor; TES; Far-infrared spectrometer; SiN membrane; Cryogenic detectors; THz detectors; Deep reactive-ion etching; DRIE;
D O I
暂无
中图分类号
学科分类号
摘要
SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner (<0.25μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}0.25~\upmu \hbox {m}$$\end{document}) and narrower (<1μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\upmu \hbox {m}$$\end{document}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0.20~\upmu \hbox {m}$$\end{document}), narrow (0.5–0.7 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}), and long (340–460 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}) SiN legs and show Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm {c}}$$\end{document} of ∼93mK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }93~\hbox {mK}$$\end{document} and Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm {n}}$$\end{document} of ∼158mΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }158~\hbox {m}{\Omega }$$\end{document}. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1–3 MHz) system. TESs without the absorber show NEPs as low as 1.1×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document} with a reasonable response speed (<1ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\hbox {ms}$$\end{document}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher NEPel(∼5×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NEP}_{\mathrm {el}} ({\sim }5\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.
引用
收藏
页码:52 / 59
页数:7
相关论文
共 50 条
  • [31] A compact and inexpensive hydrophone with an internal ultra-low-noise preamp
    Hofler, TJ
    Polydorou, S
    OCEANS 2002 MTS/IEEE CONFERENCE & EXHIBITION, VOLS 1-4, CONFERENCE PROCEEDINGS, 2002, : 2310 - 2314
  • [32] NPN PAIRS YIELD ULTRA-LOW-NOISE OP AMP
    JENKINS, A
    BOWERS, D
    EDN MAGAZINE-ELECTRICAL DESIGN NEWS, 1984, 29 (09): : 323 - 324
  • [33] Ultra-low-noise microwave to optics conversion in gallium phosphide
    Stockill, Robert
    Forsch, Moritz
    Hijazi, Frederick
    Beaudoin, Gregoire
    Pantzas, Konstantinos
    Sagnes, Isabelle
    Braive, Remy
    Groblacher, Simon
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [34] Ultra-low-noise readout integrated circuit for uncooled microbolometers
    Lv, J.
    Jiang, Y. D.
    Zhang, D. L.
    Zhou, Y.
    ELECTRONICS LETTERS, 2008, 44 (12) : 733 - 734
  • [36] Ultra-low-noise 1 μm optical frequency comb
    Kundermann, S.
    Portuondo-Campa, E.
    Lecomte, S.
    ELECTRONICS LETTERS, 2014, 50 (17) : 1231 - 1232
  • [37] ULTRA-LOW-NOISE PREAMPLIFIER USING SUPERCONDUCTING QUANTUM DEVICES
    DAVIDSON, A
    NEWBOWER, RS
    BEASLEY, MR
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1974, 45 (06): : 838 - 846
  • [38] MEASURED VALUES OF NOISE SPECTRA, S AND II, OF ULTRA-LOW-NOISE BEAMS
    HAMMER, JM
    PROCEEDINGS OF THE IEEE, 1963, 51 (02) : 390 - &
  • [39] Towards Ultra-Low-Noise MoAu Transition Edge Sensors
    D. J. Goldie
    A. V. Velichko
    D. M. Glowacka
    S. Withington
    Journal of Low Temperature Physics, 2012, 167 : 248 - 253
  • [40] Ultra-low-noise large-bandwidth transimpedance amplifier
    Giusi, Gino
    Cannata, Gianluca
    Scandurra, Graziella
    Ciofi, Carmine
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2015, 43 (10) : 1455 - 1473