Development of Ultra-Low-Noise TES Bolometer Arrays

被引:0
|
作者
T. Suzuki
P. Khosropanah
M. L. Ridder
R. A. Hijmering
J. R. Gao
H. Akamatsu
L. Gottardi
J. van der Kuur
B. D. Jackson
机构
[1] Institute of Space and Astronautical Science (ISAS)/JAXA,Kavli Institute of NanoScience
[2] SRON Netherlands Institute for Space Research,undefined
[3] Delft University of Technology,undefined
来源
关键词
Transition edge sensor; TES; Far-infrared spectrometer; SiN membrane; Cryogenic detectors; THz detectors; Deep reactive-ion etching; DRIE;
D O I
暂无
中图分类号
学科分类号
摘要
SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner (<0.25μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}0.25~\upmu \hbox {m}$$\end{document}) and narrower (<1μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\upmu \hbox {m}$$\end{document}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0.20~\upmu \hbox {m}$$\end{document}), narrow (0.5–0.7 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}), and long (340–460 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}) SiN legs and show Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm {c}}$$\end{document} of ∼93mK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }93~\hbox {mK}$$\end{document} and Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm {n}}$$\end{document} of ∼158mΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }158~\hbox {m}{\Omega }$$\end{document}. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1–3 MHz) system. TESs without the absorber show NEPs as low as 1.1×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document} with a reasonable response speed (<1ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\hbox {ms}$$\end{document}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher NEPel(∼5×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NEP}_{\mathrm {el}} ({\sim }5\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.
引用
收藏
页码:52 / 59
页数:7
相关论文
共 50 条
  • [21] Ultra-low-noise terahertz sources: Terahertz photonics
    Schneider, Thomas
    NATURE PHOTONICS, 2024, 18 (12) : 1230 - 1231
  • [22] An Ultra-Low-Noise Buck Converter for Noise-Sensitive Applications
    Rad, Amir Besharati
    Kargaran, Masoud
    Moosavi, Seyed Mohamad Razi
    Meghdadi, Masoud
    Medi, Ali
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2024, 39 (02) : 2169 - 2179
  • [23] Compact Ultra-low-noise Photonic Microwave Synthesizer
    Giunta, Michele
    Lessing, Maurice
    Haensel, Wolfgang
    Lezius, Matthias
    Fischer, Marc
    Holzwarth, Ronald
    Xie, Xiaopeng
    Le Coq, Yann
    Reeves, Jason
    Santarelli, Giorgio
    2018 IEEE RESEARCH AND APPLICATIONS OF PHOTONICS IN DEFENSE CONFERENCE (RAPID), 2018, : 215 - 217
  • [24] Progress in ultra-low-noise ASICs for radiation detectors
    Bertuccio, Giuseppe
    Caccia, Stefano
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 579 (01): : 243 - 246
  • [25] Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment
    Ward, Jonathan T.
    Austermann, Jason
    Beall, James A.
    Choi, Steve K.
    Crowley, Kevin T.
    Devlin, Mark J.
    Duff, Shannon M.
    Gallardo, Patricio M.
    Henderson, Shawn W.
    Ho, Shuay-Pwu Patty
    Hilton, Gene
    Hubmayr, Johannes
    Khavari, Niloufar
    Klein, Jeffrey
    Koopman, Brian J.
    Li, Dale
    McMahon, Jeffrey
    Mumby, Grace
    Nati, Federico
    Niemack, Michael D.
    Page, Lyman A.
    Salatino, Maria
    Schillaci, Alessandro
    Schmitt, Benjamin L.
    Simon, Sara M.
    Staggs, Suzanne T.
    Thornton, Robert
    Ullom, Joel N.
    Vavagiakis, Eve M.
    Wollack, Edward J.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VIII, 2016, 9914
  • [26] Effect of dielectric polarization noise on ultra-low-noise readout circuits
    Akiba, M
    INFRARED TECHNOLOGY AND APPLICATIONS XXVI, 2000, 4130 : 850 - 857
  • [27] A Biasing and Demodulation System for Kilopixel TES Bolometer Arrays
    Smecher, Graeme
    Aubin, Francois
    Bissonnette, Eric
    Dobbs, Matt
    Hyland, Peter
    MacDermid, Kevin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (01) : 251 - 260
  • [28] Towards Ultra-Low-Noise MoAu Transition Edge Sensors
    Goldie, D. J.
    Velichko, A. V.
    Glowacka, D. M.
    Withington, S.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 167 (3-4) : 248 - 253
  • [29] AN ULTRA-LOW-NOISE X-BAND SIGNAL SOURCE
    SEARLES, CB
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1969, ED16 (02) : 253 - &
  • [30] Ultra-low-noise TIA topology for MEMS gyroscope readout
    Serri, Mahziar
    Saeedi, Saeed
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 118