Development of Ultra-Low-Noise TES Bolometer Arrays

被引:0
|
作者
T. Suzuki
P. Khosropanah
M. L. Ridder
R. A. Hijmering
J. R. Gao
H. Akamatsu
L. Gottardi
J. van der Kuur
B. D. Jackson
机构
[1] Institute of Space and Astronautical Science (ISAS)/JAXA,Kavli Institute of NanoScience
[2] SRON Netherlands Institute for Space Research,undefined
[3] Delft University of Technology,undefined
来源
关键词
Transition edge sensor; TES; Far-infrared spectrometer; SiN membrane; Cryogenic detectors; THz detectors; Deep reactive-ion etching; DRIE;
D O I
暂无
中图分类号
学科分类号
摘要
SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner (<0.25μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}0.25~\upmu \hbox {m}$$\end{document}) and narrower (<1μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\upmu \hbox {m}$$\end{document}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0.20~\upmu \hbox {m}$$\end{document}), narrow (0.5–0.7 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}), and long (340–460 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}) SiN legs and show Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm {c}}$$\end{document} of ∼93mK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }93~\hbox {mK}$$\end{document} and Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mathrm {n}}$$\end{document} of ∼158mΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }158~\hbox {m}{\Omega }$$\end{document}. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1–3 MHz) system. TESs without the absorber show NEPs as low as 1.1×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document} with a reasonable response speed (<1ms\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${<}1~\hbox {ms}$$\end{document}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher NEPel(∼5×10-19W/Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NEP}_{\mathrm {el}} ({\sim }5\,\times \,10^{-19}~\hbox {W}/\sqrt{{\text {Hz}}}$$\end{document}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.
引用
收藏
页码:52 / 59
页数:7
相关论文
共 50 条
  • [1] Development of Ultra-Low-Noise TES Bolometer Arrays
    Suzuki, T.
    Khosropanah, P.
    Ridder, M. L.
    Hijmering, R. A.
    Gao, J. R.
    Akamatsu, H.
    Gottardi, L.
    van der Kuur, J.
    Jackson, B. D.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) : 52 - 59
  • [2] Ultra-low Noise TES bolometer Arrays for SAFARI Instrument on SPICA
    Khosropanah, P.
    Suzuki, T.
    Ridder, M. L.
    Hijmering, R. A.
    Akamatsu, H.
    Gottardi, L.
    Van der Kuur, J.
    Gao, J. -R.
    Jackson, B. D.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VIII, 2016, 9914
  • [3] Development of Ultra-Low-Noise Transformer Technology
    Girgis, Ramsis S.
    Bernesjoe, Mats S.
    Thomas, Scott
    Anger, Jan
    Chu, Donald
    Moore, Harold R.
    IEEE TRANSACTIONS ON POWER DELIVERY, 2011, 26 (01) : 220 - 226
  • [4] Performance of a Low-Noise Test Facility for the SAFARI TES Bolometer Arrays
    M. D. Audley
    G. de Lange
    L. Ferrari
    J.-R. Gao
    R. A. Hijmering
    P. Khosropanah
    M. Lindeman
    M. L. Ridder
    Journal of Low Temperature Physics, 2012, 167 : 208 - 213
  • [5] Performance of a Low-Noise Test Facility for the SAFARI TES Bolometer Arrays
    Audley, M. D.
    de Lange, G.
    Ferrari, L.
    Gao, J-R.
    Hijmering, R. A.
    Khosropanah, P.
    Lindeman, M.
    Ridder, M. L.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 167 (3-4) : 208 - 213
  • [6] Development of ultra-low-noise spectrophotometry for analytical applications
    Xu, Z
    Larsen, DW
    ANALYTICAL CHEMISTRY, 2005, 77 (19) : 6463 - 6468
  • [7] Development of NbSi TES bolometer arrays for submillimeter astronomy
    Pajot, F.
    Atik, Y.
    Belier, B.
    Berge, L.
    Breelle, E.
    Collin, S.
    Dumoulin, L.
    Evesque, C.
    Leriche, B.
    Marnieros, S.
    Piat, M.
    Prele, D.
    Voisin, F.
    2009 34TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, VOLS 1 AND 2, 2009, : 662 - +
  • [8] Ultra-low-noise avalanche photodiodes
    Campbell, JC
    Wang, SL
    Zheng, XG
    Kinsey, GS
    Holmes, AL
    Sun, X
    Sidhu, R
    Yuan, P
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES IX, 2001, 4283 : 480 - 488
  • [9] Ultra-low-noise terahertz sources
    Schneider, Thomas
    NATURE PHOTONICS, 2024,
  • [10] Development of Space-Optimized TES Bolometer Arrays for LiteBIRD
    G. C. Jaehnig
    K. Arnold
    J. Austermann
    D. Becker
    S. Duff
    N. W. Halverson
    M. Hazumi
    G. Hilton
    J. Hubmayr
    A. T. Lee
    M. Link
    A. Suzuki
    M. Vissers
    S. Walker
    B. Westbrook
    Journal of Low Temperature Physics, 2020, 199 : 646 - 653