A Sum Operator with Applications to Self-Improving Properties of Poincaré Inequalities in Metric Spaces

被引:0
|
作者
Bruno Franchi
Carlos Pérez
Richard L. Wheeden
机构
[1] Dipartimento di Matematica,
[2] Università di Bologna,undefined
[3] Piazza di porta San Donato,undefined
[4] 5,undefined
[5] 40126 Bologna,undefined
[6] Departmento de Análisis Matemático,undefined
[7] Facultad de Matemáticas,undefined
[8] Universidad de Sevilla,undefined
[9] 41080 Sevilla,undefined
[10] Department of Mathematics,undefined
[11] Rutgers University,undefined
[12] New Brunswick,undefined
[13] New Jersey 08903,undefined
关键词
Integral Operator; Norm Estimate; Fractional Integral; Homogeneous Type; Potential Type;
D O I
暂无
中图分类号
学科分类号
摘要
We define a class of summation operators with applications to the self-improving nature of Poincaré–Sobolev estimates, in fairly general quasimetric spaces of homogeneous type. We show that these sum operators play the familiar role of integral operators of potential type (e.g., Riesz fractional integrals) in deriving Poincaré–Sobolev estimates in cases when representations of functions by such integral operators are not readily available. In particular, we derive norm estimates for sum operators and use these estimates to obtain improved Poincaré–Sobolev results.
引用
收藏
页码:511 / 540
页数:29
相关论文
共 50 条
  • [41] Self-Improving Properties of Continuous and Discrete Muckenhoupt Weights: A Unified Approach
    Abuelwafa, Maryam M.
    Agarwal, Ravi P.
    Rabie, Safi S.
    Saker, Samir H.
    AXIOMS, 2023, 12 (06)
  • [42] SELF-IMPROVING PROPERTIES OF VERY WEAK SOLUTIONS TO DOUBLE PHASE SYSTEMS
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Kim, Wontae
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 8733 - 8768
  • [43] Applications of bornological covering properties in metric spaces
    Chandra, Debraj
    Das, Pratulananda
    Das, Subhankar
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (01): : 43 - 63
  • [44] ON SOME TRIANGULAR INEQUALITIES AND APPLICATIONS IN 2-FUZZY METRIC SPACES
    Guner, Elif
    Aygun, Halis
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (02): : 480 - 490
  • [45] Weighted higher order exponential type inequalities in metric spaces and applications
    Wang, Huiju
    Niu, Pengcheng
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (04) : 637 - 650
  • [46] Some integral inequalities for £ operator and their applications on self-shrinkers
    Zhu, Yecheng
    Chen, Qing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) : 645 - 658
  • [47] Mapping properties of the discrete fractional maximal operator in metric measure spaces
    Heikkinen, Toni
    Kinnunen, Juha
    Nuutinen, Juho
    Tuominen, Heli
    KYOTO JOURNAL OF MATHEMATICS, 2013, 53 (03) : 693 - 712
  • [48] Sharp Adams inequalities with exact growth conditions on metric measure spaces and applications
    Morpurgo, Carlo
    Qin, Liuyu
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 977 - 1047
  • [49] Discrete Fractional Inequalities Pertaining a Fractional Sum Operator with Some Applications on Time Scales
    Khan, Zareen A.
    Shah, Kamal
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [50] Self-improving generative foundation model for synthetic medical image generation and clinical applications
    Jinzhuo Wang
    Kai Wang
    Yunfang Yu
    Yuxing Lu
    Wenchao Xiao
    Zhuo Sun
    Fei Liu
    Zixing Zou
    Yuanxu Gao
    Lei Yang
    Hong-Yu Zhou
    Hanpei Miao
    Wenting Zhao
    Lisha Huang
    Lingchao Zeng
    Rui Guo
    Ieng Chong
    Boyu Deng
    Linling Cheng
    Xiaoniao Chen
    Jing Luo
    Meng-Hua Zhu
    Daniel Baptista-Hon
    Olivia Monteiro
    Ming Li
    Yu Ke
    Jiahui Li
    Simiao Zeng
    Taihua Guan
    Jin Zeng
    Kanmin Xue
    Eric Oermann
    Huiyan Luo
    Yun Yin
    Kang Zhang
    Jia Qu
    Nature Medicine, 2025, 31 (2) : 609 - 617