A Sum Operator with Applications to Self-Improving Properties of Poincaré Inequalities in Metric Spaces

被引:0
|
作者
Bruno Franchi
Carlos Pérez
Richard L. Wheeden
机构
[1] Dipartimento di Matematica,
[2] Università di Bologna,undefined
[3] Piazza di porta San Donato,undefined
[4] 5,undefined
[5] 40126 Bologna,undefined
[6] Departmento de Análisis Matemático,undefined
[7] Facultad de Matemáticas,undefined
[8] Universidad de Sevilla,undefined
[9] 41080 Sevilla,undefined
[10] Department of Mathematics,undefined
[11] Rutgers University,undefined
[12] New Brunswick,undefined
[13] New Jersey 08903,undefined
关键词
Integral Operator; Norm Estimate; Fractional Integral; Homogeneous Type; Potential Type;
D O I
暂无
中图分类号
学科分类号
摘要
We define a class of summation operators with applications to the self-improving nature of Poincaré–Sobolev estimates, in fairly general quasimetric spaces of homogeneous type. We show that these sum operators play the familiar role of integral operators of potential type (e.g., Riesz fractional integrals) in deriving Poincaré–Sobolev estimates in cases when representations of functions by such integral operators are not readily available. In particular, we derive norm estimates for sum operators and use these estimates to obtain improved Poincaré–Sobolev results.
引用
收藏
页码:511 / 540
页数:29
相关论文
共 50 条
  • [21] Response properties of self-improving systems
    Krakovsky, Andrey
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (13):
  • [22] The Self-improving Property of the Jacobian Determinant in Orlicz Spaces
    Giannetti, Flavia
    Greco, Luigi
    di Napoli, Antonia Passarelli
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (01) : 91 - 114
  • [23] Oscillation estimates, self-improving results and good-λ inequalities
    Berkovits, Lauri
    Kinnunen, Juha
    Maria Martell, Jose
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (09) : 3559 - 3590
  • [24] Self-improving properties of weighted Gehring classes with applications to partial differential equations
    S. H. Saker
    J. Alzabut
    D. O’Regan
    R. P. Agarwal
    Advances in Difference Equations, 2021
  • [25] Self-improving properties of weighted Gehring classes with applications to partial differential equations
    Saker, S. H.
    Alzabut, J.
    O'Regan, D.
    Agarwal, R. P.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [26] Self-improving properties of discrete Muckenhoupt weights
    Saker, Samir H.
    O'Regan, Donal
    Agarwal, Ravi P.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2021, 41 (03): : 169 - 178
  • [27] Self Improving Sobolev-Poincaré Inequalities, Truncation and Symmetrization
    Joaquim Martin
    Mario Milman
    Potential Analysis, 2008, 29 : 391 - 408
  • [28] SELF-IMPROVING PROPERTIES OF A GENERALIZED MUCKENHOUPT CLASS
    Agarwal, R. P.
    O'Regan, D.
    Saker, S. H.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (01) : 113 - 134
  • [29] Self-improving properties of a generalized Muckenhoupt class
    R. P. Agarwal
    D. O’Regan
    S. H. Saker
    Acta Mathematica Hungarica, 2021, 164 : 113 - 134
  • [30] A Pervasive Environment Based on Personal Self-improving Smart Spaces
    Crotty, Michael
    Taylor, Nick
    Williams, Howard
    Frank, Korbinian
    Roussaki, Ioanna
    Roddy, Mark
    CONSTRUCTING AMBIENT INTELLIGENCE, 2009, 32 : 58 - +