A Sum Operator with Applications to Self-Improving Properties of Poincaré Inequalities in Metric Spaces

被引:0
|
作者
Bruno Franchi
Carlos Pérez
Richard L. Wheeden
机构
[1] Dipartimento di Matematica,
[2] Università di Bologna,undefined
[3] Piazza di porta San Donato,undefined
[4] 5,undefined
[5] 40126 Bologna,undefined
[6] Departmento de Análisis Matemático,undefined
[7] Facultad de Matemáticas,undefined
[8] Universidad de Sevilla,undefined
[9] 41080 Sevilla,undefined
[10] Department of Mathematics,undefined
[11] Rutgers University,undefined
[12] New Brunswick,undefined
[13] New Jersey 08903,undefined
关键词
Integral Operator; Norm Estimate; Fractional Integral; Homogeneous Type; Potential Type;
D O I
暂无
中图分类号
学科分类号
摘要
We define a class of summation operators with applications to the self-improving nature of Poincaré–Sobolev estimates, in fairly general quasimetric spaces of homogeneous type. We show that these sum operators play the familiar role of integral operators of potential type (e.g., Riesz fractional integrals) in deriving Poincaré–Sobolev estimates in cases when representations of functions by such integral operators are not readily available. In particular, we derive norm estimates for sum operators and use these estimates to obtain improved Poincaré–Sobolev results.
引用
收藏
页码:511 / 540
页数:29
相关论文
共 50 条
  • [31] Nonlocal self-improving properties: a functional analytic approach
    Auscher, Pascal
    Bortz, Simon
    Egert, Moritz
    Saari, Olli
    TUNISIAN JOURNAL OF MATHEMATICS, 2019, 1 (02) : 151 - 183
  • [32] SELF-IMPROVING POINCARE-SOBOLEV TYPE FUNCTIONALS IN PRODUCT SPACES
    Eugenia Cejas, Maria
    Mosquera, Carolina
    Perez, Carlos
    Rela, Ezequiel
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 149 (01): : 1 - 48
  • [33] SELF-IMPROVING INEQUALITIES FOR BOUNDED WEAK SOLUTIONS TO NONLOCAL DOUBLE PHASE EQUATIONS
    Scott, James M.
    Mengesha, Tadele
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (01) : 183 - 212
  • [34] SOME WEIGHTED SUM AND PRODUCT INEQUALITIES IN Lp SPACES AND THEIR APPLICATIONS
    Brown, R. C.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02) : 42 - 58
  • [35] Nagy type inequalities in metric measure spaces and some applications
    Babenko, V. F.
    Babenko, V. V.
    Kovalenko, O., V
    Parfinovych, N., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (02) : 563 - 575
  • [36] Covering theorems, inequalities on metric spaces and applications to PDE’s
    Giuseppe Di Fazio
    Cristian E. Gutièrrez
    Ermanno Lanconelli
    Mathematische Annalen, 2008, 341 : 255 - 291
  • [37] Large scale Sobolev inequalities on metric measure spaces and applications
    Tessera, Romain
    REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (03) : 825 - 864
  • [38] Covering theorems, inequalities on metric spaces and applications to PDE's
    Di Fazio, Giuseppe
    Gutierrez, Cristian E.
    Lanconelli, Ermanno
    MATHEMATISCHE ANNALEN, 2008, 341 (02) : 255 - 291
  • [39] Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces
    Romain Tessera
    Geometriae Dedicata, 2008, 136 : 203 - 220
  • [40] Power vector inequalities for operator pairs in Hilbert spaces and their applications
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    OPEN MATHEMATICS, 2024, 22 (01):