A Sum Operator with Applications to Self-Improving Properties of Poincaré Inequalities in Metric Spaces

被引:0
|
作者
Bruno Franchi
Carlos Pérez
Richard L. Wheeden
机构
[1] Dipartimento di Matematica,
[2] Università di Bologna,undefined
[3] Piazza di porta San Donato,undefined
[4] 5,undefined
[5] 40126 Bologna,undefined
[6] Departmento de Análisis Matemático,undefined
[7] Facultad de Matemáticas,undefined
[8] Universidad de Sevilla,undefined
[9] 41080 Sevilla,undefined
[10] Department of Mathematics,undefined
[11] Rutgers University,undefined
[12] New Brunswick,undefined
[13] New Jersey 08903,undefined
关键词
Integral Operator; Norm Estimate; Fractional Integral; Homogeneous Type; Potential Type;
D O I
暂无
中图分类号
学科分类号
摘要
We define a class of summation operators with applications to the self-improving nature of Poincaré–Sobolev estimates, in fairly general quasimetric spaces of homogeneous type. We show that these sum operators play the familiar role of integral operators of potential type (e.g., Riesz fractional integrals) in deriving Poincaré–Sobolev estimates in cases when representations of functions by such integral operators are not readily available. In particular, we derive norm estimates for sum operators and use these estimates to obtain improved Poincaré–Sobolev results.
引用
收藏
页码:511 / 540
页数:29
相关论文
共 50 条