A Polynomial Kernel for Bipartite Permutation Vertex Deletion

被引:0
|
作者
Jan Derbisz
Lawqueen Kanesh
Jayakrishnan Madathil
Abhishek Sahu
Saket Saurabh
Shaily Verma
机构
[1] Jagiellonian University in Kraków,Theoretical Computer Science Department, Faculty of Mathematics and Computer Science
[2] Indian Institute of Technology Jodhpur,undefined
[3] Chennai Mathematical Institute,undefined
[4] The Institute of Mathematical Sciences,undefined
[5] HBNI,undefined
[6] University of Bergen,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Kernelization; Bipartite permutation graph; Bicliques;
D O I
暂无
中图分类号
学科分类号
摘要
In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} such that |S|≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S| \le k$$\end{document} and G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bożyk et al. [IPEC 2020] initiated a study on this problem by requiring that G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time O(9k|V(G)|9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(9^k |V(G)|^{9})$$\end{document}. Moreover, they posed the question whetherBPVD admits a polynomial kernel. We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G, k) of BPVD, in polynomial time we obtain an equivalent instance (G′,k′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G',k')$$\end{document} of BPVD such that k′≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k'\le k$$\end{document}, and |V(G′)|+|E(G′)|≤kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V(G')|+|E(G')|\le k^{\mathcal {O}(1)}$$\end{document}.
引用
收藏
页码:3246 / 3275
页数:29
相关论文
共 50 条
  • [41] RECURSIVE FORMULA FOR CALCULATING THE CHROMATIC POLYNOMIAL OF A GRAPH BY VERTEX DELETION
    许进
    ActaMathematicaScientia, 2004, (04) : 577 - 582
  • [42] A Polynomial Kernel for 3-Leaf Power Deletion
    Jungho Ahn
    Eduard Eiben
    O.-joung Kwon
    Sang-il Oum
    Algorithmica, 2023, 85 : 3058 - 3087
  • [43] Preprocessing for Outerplanar Vertex Deletion: An Elementary Kernel of Quartic Size
    Donkers, Huib
    Jansen, Bart M. P.
    Wlodarczyk, Michal
    ALGORITHMICA, 2022, 84 (11) : 3407 - 3458
  • [44] Preprocessing for Outerplanar Vertex Deletion: An Elementary Kernel of Quartic Size
    Huib Donkers
    Bart M. P. Jansen
    Michał Włodarczyk
    Algorithmica, 2022, 84 : 3407 - 3458
  • [45] A Polynomial Kernel for Deletion to the Scattered Class of Cliques and Trees
    Jacob, Ashwin
    Majumdar, Diptapriyo
    Zehavi, Meirav
    Leibniz International Proceedings in Informatics, LIPIcs, 322
  • [46] Recursive formula for calculating the chromatic polynomial of a graph by vertex deletion
    Xu, J
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (04) : 577 - 582
  • [48] Preprocessing for outerplanar vertex deletion: An elementary kernel of quartic size
    Donkers, Huib
    Jansen, Bart M.P.
    Wlodarczyk, Michal
    Leibniz International Proceedings in Informatics, LIPIcs, 2021, 214
  • [49] A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs
    Mohammed Lalou
    Hamamache Kheddouci
    Optimization Letters, 2019, 13 : 1345 - 1364
  • [50] A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs
    Lalou, Mohammed
    Kheddouci, Hamamache
    OPTIMIZATION LETTERS, 2019, 13 (06) : 1345 - 1364