A Polynomial Kernel for Bipartite Permutation Vertex Deletion

被引:0
|
作者
Jan Derbisz
Lawqueen Kanesh
Jayakrishnan Madathil
Abhishek Sahu
Saket Saurabh
Shaily Verma
机构
[1] Jagiellonian University in Kraków,Theoretical Computer Science Department, Faculty of Mathematics and Computer Science
[2] Indian Institute of Technology Jodhpur,undefined
[3] Chennai Mathematical Institute,undefined
[4] The Institute of Mathematical Sciences,undefined
[5] HBNI,undefined
[6] University of Bergen,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Kernelization; Bipartite permutation graph; Bicliques;
D O I
暂无
中图分类号
学科分类号
摘要
In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} such that |S|≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S| \le k$$\end{document} and G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bożyk et al. [IPEC 2020] initiated a study on this problem by requiring that G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time O(9k|V(G)|9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(9^k |V(G)|^{9})$$\end{document}. Moreover, they posed the question whetherBPVD admits a polynomial kernel. We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G, k) of BPVD, in polynomial time we obtain an equivalent instance (G′,k′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G',k')$$\end{document} of BPVD such that k′≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k'\le k$$\end{document}, and |V(G′)|+|E(G′)|≤kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V(G')|+|E(G')|\le k^{\mathcal {O}(1)}$$\end{document}.
引用
收藏
页码:3246 / 3275
页数:29
相关论文
共 50 条
  • [21] Strongly polynomial simplex algorithm for bipartite vertex packing
    Armstrong, RD
    Jin, ZY
    DISCRETE APPLIED MATHEMATICS, 1996, 64 (02) : 97 - 103
  • [22] A Polynomial Kernel for Block Graph Deletion
    Kim, Eun Jung
    Kwon, O-Joung
    ALGORITHMICA, 2017, 79 (01) : 251 - 270
  • [23] A Polynomial Kernel for Block Graph Deletion
    Eun Jung Kim
    O-Joung Kwon
    Algorithmica, 2017, 79 : 251 - 270
  • [24] Finite transitive permutation groups and bipartite vertex-transitive graphs
    Praeger, CE
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (1-2) : 461 - 475
  • [25] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 333 - +
  • [26] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    THEORY OF COMPUTING SYSTEMS, 2013, 53 (04) : 609 - 620
  • [27] A Polynomial Kernel for Feedback Arc Set on Bipartite Tournaments
    Pranabendu Misra
    Venkatesh Raman
    M. S. Ramanujan
    Saket Saurabh
    Theory of Computing Systems, 2013, 53 : 609 - 620
  • [28] A Quadratic Vertex Kernel for Feedback Arc Set in Bipartite Tournaments
    Xiao, Mingyu
    Guo, Jiong
    ALGORITHMICA, 2015, 71 (01) : 87 - 97
  • [29] Constrained Bipartite Vertex Cover: The Easy Kernel is Essentially Tight
    Jansen, Bart M. P.
    33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [30] A Quadratic Vertex Kernel for Feedback Arc Set in Bipartite Tournaments
    Xiao, Mingyu
    Guo, Jiong
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 825 - 835