A Polynomial Kernel for Bipartite Permutation Vertex Deletion

被引:0
|
作者
Jan Derbisz
Lawqueen Kanesh
Jayakrishnan Madathil
Abhishek Sahu
Saket Saurabh
Shaily Verma
机构
[1] Jagiellonian University in Kraków,Theoretical Computer Science Department, Faculty of Mathematics and Computer Science
[2] Indian Institute of Technology Jodhpur,undefined
[3] Chennai Mathematical Institute,undefined
[4] The Institute of Mathematical Sciences,undefined
[5] HBNI,undefined
[6] University of Bergen,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Kernelization; Bipartite permutation graph; Bicliques;
D O I
暂无
中图分类号
学科分类号
摘要
In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} such that |S|≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S| \le k$$\end{document} and G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bożyk et al. [IPEC 2020] initiated a study on this problem by requiring that G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time O(9k|V(G)|9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(9^k |V(G)|^{9})$$\end{document}. Moreover, they posed the question whetherBPVD admits a polynomial kernel. We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G, k) of BPVD, in polynomial time we obtain an equivalent instance (G′,k′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G',k')$$\end{document} of BPVD such that k′≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k'\le k$$\end{document}, and |V(G′)|+|E(G′)|≤kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V(G')|+|E(G')|\le k^{\mathcal {O}(1)}$$\end{document}.
引用
收藏
页码:3246 / 3275
页数:29
相关论文
共 50 条
  • [31] A Quadratic Vertex Kernel for Feedback Arc Set in Bipartite Tournaments
    Mingyu Xiao
    Jiong Guo
    Algorithmica, 2015, 71 : 87 - 97
  • [32] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Bergougnoux, Benjamin
    Eiben, Eduard
    Ganian, Robert
    Ordyniak, Sebastian
    Ramanujan, M. S.
    ALGORITHMICA, 2021, 83 (05) : 1201 - 1221
  • [33] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Eva-Maria C. Hols
    Stefan Kratsch
    Theory of Computing Systems, 2018, 62 : 63 - 92
  • [34] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Hols, Eva-Maria C.
    Kratsch, Stefan
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (01) : 63 - 92
  • [35] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Benjamin Bergougnoux
    Eduard Eiben
    Robert Ganian
    Sebastian Ordyniak
    M. S. Ramanujan
    Algorithmica, 2021, 83 : 1201 - 1221
  • [36] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Hols, Eva-Maria C.
    Kratsch, Stefan
    33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [37] A Polynomial Kernel for Funnel Arc Deletion Set
    Milani, Marcelo Garlet
    ALGORITHMICA, 2022, 84 (08) : 2358 - 2378
  • [38] A Polynomial Kernel for Funnel Arc Deletion Set
    Marcelo Garlet Milani
    Algorithmica, 2022, 84 : 2358 - 2378
  • [39] A Quartic Kernel for Pathwidth-One Vertex Deletion
    Philip, Geevarghese
    Raman, Venkatesh
    Villanger, Yngve
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 196 - +
  • [40] A Polynomial Kernel for 3-Leaf Power Deletion
    Ahn, Jungho
    Eiben, Eduard
    Kwon, O. -Joung
    Oum, Sang-Il
    ALGORITHMICA, 2023, 85 (10) : 3058 - 3087