A Polynomial Kernel for Funnel Arc Deletion Set

被引:0
|
作者
Marcelo Garlet Milani
机构
[1] Institute of Software Engineering and Theoretical Computer Science,Logic and Semantics
来源
Algorithmica | 2022年 / 84卷
关键词
Graph editing; Directed feedback arc set; Parameterized algorithm; Kernels; Funnels;
D O I
暂无
中图分类号
学科分类号
摘要
In Directed Feedback Arc Set (DFAS) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem in parameterized complexity to decide if DFAS admits a kernel of polynomial size. We consider C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}-Arc Deletion Set (C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}-ADS), a variant of DFAS where we want to remove at most k arcs from the input digraph in order to turn it into a digraph of a class C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}. In this work, we choose C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} to be the class of funnels. Funnel-ADS is NP-hard even if the input is a DAG, but is fixed-parameter tractable with respect to k. So far no polynomial kernels for this problem were known. Our main result is a kernel for Funnel-ADS with O(k6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^6)$$\end{document} many vertices and O(k7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^7)$$\end{document} many arcs, computable in O(nm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(nm)$$\end{document} time, where n is the number of vertices and m the number of arcs in the input digraph.
引用
收藏
页码:2358 / 2378
页数:20
相关论文
共 50 条
  • [1] A Polynomial Kernel for Funnel Arc Deletion Set
    Milani, Marcelo Garlet
    ALGORITHMICA, 2022, 84 (08) : 2358 - 2378
  • [2] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 333 - +
  • [3] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    THEORY OF COMPUTING SYSTEMS, 2013, 53 (04) : 609 - 620
  • [4] A Polynomial Kernel for Feedback Arc Set on Bipartite Tournaments
    Pranabendu Misra
    Venkatesh Raman
    M. S. Ramanujan
    Saket Saurabh
    Theory of Computing Systems, 2013, 53 : 609 - 620
  • [5] A Polynomial Kernel for Proper Helly Circular-Arc Vertex Deletion
    Agrawal, Akanksha
    Jana, Satyabrata
    Sahu, Abhishek
    LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 208 - 222
  • [6] TREE DELETION SET HAS A POLYNOMIAL KERNEL (BUT NO OPTO(1) APPROXIMATION)
    Giannopoulou, Archontia C.
    Lokshtanov, Daniel
    Saurabh, Saket
    Suchy, Ondrej
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1371 - 1384
  • [7] A Polynomial Kernel for Block Graph Deletion
    Kim, Eun Jung
    Kwon, O-Joung
    ALGORITHMICA, 2017, 79 (01) : 251 - 270
  • [8] A Polynomial Kernel for Block Graph Deletion
    Eun Jung Kim
    O-Joung Kwon
    Algorithmica, 2017, 79 : 251 - 270
  • [9] Polynomial Kernel for Interval Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [10] A Polynomial Kernel for PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    ALGORITHMS - ESA 2012, 2012, 7501 : 467 - 478