TREE DELETION SET HAS A POLYNOMIAL KERNEL (BUT NO OPTO(1) APPROXIMATION)

被引:4
|
作者
Giannopoulou, Archontia C. [1 ]
Lokshtanov, Daniel [2 ]
Saurabh, Saket [3 ]
Suchy, Ondrej [4 ]
机构
[1] Univ Warsaw, Inst Informat, Warsaw, Poland
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[3] Inst Math Sci, Chennai, Tamil Nadu, India
[4] Czech Tech Univ, Fac Informat Technol, Dept Theoret Comp Sci, Prague, Czech Republic
基金
欧洲研究理事会;
关键词
Tree Deletion Set; Feedback Vertex Set; kernelization; linear equations; FEEDBACK VERTEX SET; COMPLEXITY; ALGORITHM;
D O I
10.1137/15M1038876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Tree Deletion Set problem the input is a graph G together with an integer k. The objective is to determine whether there exists a set S of at most k vertices such that G \ S is a tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPTc for any constant c. In this paper we give an O(k(5)) size kernel for the Tree Deletion Set problem. An appealing feature of our kernelization algorithm is a new reduction rule, based on systems of linear equations, that we use to handle the instances on which TREE DELETION SET is hard to approximate.
引用
收藏
页码:1371 / 1384
页数:14
相关论文
共 50 条
  • [1] A Polynomial Kernel for Funnel Arc Deletion Set
    Milani, Marcelo Garlet
    ALGORITHMICA, 2022, 84 (08) : 2358 - 2378
  • [2] A Polynomial Kernel for Funnel Arc Deletion Set
    Marcelo Garlet Milani
    Algorithmica, 2022, 84 : 2358 - 2378
  • [3] A Polynomial Kernel for Block Graph Deletion
    Kim, Eun Jung
    Kwon, O-Joung
    ALGORITHMICA, 2017, 79 (01) : 251 - 270
  • [4] A Polynomial Kernel for Block Graph Deletion
    Eun Jung Kim
    O-Joung Kwon
    Algorithmica, 2017, 79 : 251 - 270
  • [5] Polynomial Kernel for Interval Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [6] A Polynomial Kernel for PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    ALGORITHMS - ESA 2012, 2012, 7501 : 467 - 478
  • [7] A Polynomial Kernel for Bipartite Permutation Vertex Deletion
    Derbisz, Jan
    Kanesh, Lawqueen
    Madathil, Jayakrishnan
    Sahu, Abhishek
    Saurabh, Saket
    Verma, Shaily
    ALGORITHMICA, 2022, 84 (11) : 3246 - 3275
  • [8] A POLYNOMIAL KERNEL FOR PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1964 - 1976
  • [9] A Polynomial Kernel for Bipartite Permutation Vertex Deletion
    Jan Derbisz
    Lawqueen Kanesh
    Jayakrishnan Madathil
    Abhishek Sahu
    Saket Saurabh
    Shaily Verma
    Algorithmica, 2022, 84 : 3246 - 3275
  • [10] An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion
    Mamadou Moustapha Kanté
    Eun Jung Kim
    O-joung Kwon
    Christophe Paul
    Algorithmica, 2017, 79 : 66 - 95