A Polynomial Kernel for Bipartite Permutation Vertex Deletion

被引:0
|
作者
Jan Derbisz
Lawqueen Kanesh
Jayakrishnan Madathil
Abhishek Sahu
Saket Saurabh
Shaily Verma
机构
[1] Jagiellonian University in Kraków,Theoretical Computer Science Department, Faculty of Mathematics and Computer Science
[2] Indian Institute of Technology Jodhpur,undefined
[3] Chennai Mathematical Institute,undefined
[4] The Institute of Mathematical Sciences,undefined
[5] HBNI,undefined
[6] University of Bergen,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Kernelization; Bipartite permutation graph; Bicliques;
D O I
暂无
中图分类号
学科分类号
摘要
In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} such that |S|≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S| \le k$$\end{document} and G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bożyk et al. [IPEC 2020] initiated a study on this problem by requiring that G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time O(9k|V(G)|9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(9^k |V(G)|^{9})$$\end{document}. Moreover, they posed the question whetherBPVD admits a polynomial kernel. We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G, k) of BPVD, in polynomial time we obtain an equivalent instance (G′,k′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G',k')$$\end{document} of BPVD such that k′≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k'\le k$$\end{document}, and |V(G′)|+|E(G′)|≤kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V(G')|+|E(G')|\le k^{\mathcal {O}(1)}$$\end{document}.
引用
收藏
页码:3246 / 3275
页数:29
相关论文
共 50 条
  • [1] A Polynomial Kernel for Bipartite Permutation Vertex Deletion
    Derbisz, Jan
    Kanesh, Lawqueen
    Madathil, Jayakrishnan
    Sahu, Abhishek
    Saurabh, Saket
    Verma, Shaily
    ALGORITHMICA, 2022, 84 (11) : 3246 - 3275
  • [2] Vertex deletion into bipartite permutation graphs
    Bożyk, Lukasz
    Derbisz, Jan
    Krawczyk, Tomasz
    Novotná, Jana
    Okrasa, Karolina
    Leibniz International Proceedings in Informatics, LIPIcs, 2020, 180
  • [3] Vertex Deletion into Bipartite Permutation Graphs
    Łukasz Bożyk
    Jan Derbisz
    Tomasz Krawczyk
    Jana Novotná
    Karolina Okrasa
    Algorithmica, 2022, 84 : 2271 - 2291
  • [4] Vertex Deletion into Bipartite Permutation Graphs
    Bozyk, Lukasz
    Derbisz, Jan
    Krawczyk, Tomasz
    Novotna, Jana
    Okrasa, Karolina
    ALGORITHMICA, 2022, 84 (08) : 2271 - 2291
  • [5] Polynomial Kernel for Interval Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [6] A POLYNOMIAL KERNEL FOR PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1964 - 1976
  • [7] A Polynomial Kernel for PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    ALGORITHMS - ESA 2012, 2012, 7501 : 467 - 478
  • [8] A polynomial kernel for distance-hereditary vertex deletion
    Kim, Eun Jung
    Kwon, O-Joung
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, 10389 LNCS : 509 - 520
  • [9] A Polynomial Kernel for Distance-Hereditary Vertex Deletion
    Eun Jung Kim
    O-joung Kwon
    Algorithmica, 2021, 83 : 2096 - 2141
  • [10] A polynomial kernel for Distance-Hereditary Vertex Deletion
    Jung, Eun
    Kwon, O-Joung
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 509 - 520