TREE DELETION SET HAS A POLYNOMIAL KERNEL (BUT NO OPTO(1) APPROXIMATION)

被引:4
|
作者
Giannopoulou, Archontia C. [1 ]
Lokshtanov, Daniel [2 ]
Saurabh, Saket [3 ]
Suchy, Ondrej [4 ]
机构
[1] Univ Warsaw, Inst Informat, Warsaw, Poland
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[3] Inst Math Sci, Chennai, Tamil Nadu, India
[4] Czech Tech Univ, Fac Informat Technol, Dept Theoret Comp Sci, Prague, Czech Republic
基金
欧洲研究理事会;
关键词
Tree Deletion Set; Feedback Vertex Set; kernelization; linear equations; FEEDBACK VERTEX SET; COMPLEXITY; ALGORITHM;
D O I
10.1137/15M1038876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Tree Deletion Set problem the input is a graph G together with an integer k. The objective is to determine whether there exists a set S of at most k vertices such that G \ S is a tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPTc for any constant c. In this paper we give an O(k(5)) size kernel for the Tree Deletion Set problem. An appealing feature of our kernelization algorithm is a new reduction rule, based on systems of linear equations, that we use to handle the instances on which TREE DELETION SET is hard to approximate.
引用
收藏
页码:1371 / 1384
页数:14
相关论文
共 50 条
  • [21] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Eva-Maria C. Hols
    Stefan Kratsch
    Theory of Computing Systems, 2018, 62 : 63 - 92
  • [22] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Bergougnoux, Benjamin
    Eiben, Eduard
    Ganian, Robert
    Ordyniak, Sebastian
    Ramanujan, M. S.
    ALGORITHMICA, 2021, 83 (05) : 1201 - 1221
  • [23] A Polynomial Kernel for FEEDBACK ARC SET on Bipartite Tournaments
    Misra, Pranabendu
    Raman, Venkatesh
    Ramanujan, M. S.
    Saurabh, Saket
    THEORY OF COMPUTING SYSTEMS, 2013, 53 (04) : 609 - 620
  • [24] A Polynomial Kernel for Feedback Arc Set on Bipartite Tournaments
    Pranabendu Misra
    Venkatesh Raman
    M. S. Ramanujan
    Saket Saurabh
    Theory of Computing Systems, 2013, 53 : 609 - 620
  • [25] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Hols, Eva-Maria C.
    Kratsch, Stefan
    33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [26] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Benjamin Bergougnoux
    Eduard Eiben
    Robert Ganian
    Sebastian Ordyniak
    M. S. Ramanujan
    Algorithmica, 2021, 83 : 1201 - 1221
  • [27] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Hols, Eva-Maria C.
    Kratsch, Stefan
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (01) : 63 - 92
  • [28] A Polynomial Kernel for Proper Helly Circular-Arc Vertex Deletion
    Agrawal, Akanksha
    Jana, Satyabrata
    Sahu, Abhishek
    LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 208 - 222
  • [29] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1383 - 1398
  • [30] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (01)