A Polynomial Kernel for 3-Leaf Power Deletion

被引:0
|
作者
Jungho Ahn
Eduard Eiben
O.-joung Kwon
Sang-il Oum
机构
[1] Institute for Basic Science (IBS),Discrete Mathematics Group
[2] KAIST,Department of Mathematical Sciences
[3] University of London,Department of Computer Science, Royal Holloway
[4] Hanyang University,Department of Mathematics
来源
Algorithmica | 2023年 / 85卷
关键词
-Leaf power; Parameterized; Algorithm; Kernelization; Vertex deletion;
D O I
暂无
中图分类号
学科分类号
摘要
For a non-negative integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-leaf power of a tree T is a simple graph G on the leaves of T such that two vertices are adjacent in G if and only if their distance in T is at most ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. We provide a polynomial kernel for the problem of deciding whether we can delete at most k vertices to make an input graph a 3-leaf power of some tree. More specifically, we present a polynomial-time algorithm for an input instance (G, k) for the problem to output an equivalent instance (G′,k′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G',k')$$\end{document} such that k′⩽k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k'\leqslant k$$\end{document} and G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} has at most O(k14)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^{14})$$\end{document} vertices.
引用
收藏
页码:3058 / 3087
页数:29
相关论文
共 50 条
  • [1] A Polynomial Kernel for 3-Leaf Power Deletion
    Ahn, Jungho
    Eiben, Eduard
    Kwon, O. -Joung
    Oum, Sang-Il
    ALGORITHMICA, 2023, 85 (10) : 3058 - 3087
  • [2] Polynomial Kernels for 3-Leaf Power Graph Modification Problems
    Bessy, Stephane
    Paul, Christophe
    Perez, Anthony
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 72 - +
  • [3] Polynomial kernels for 3-leaf power graph modification problems
    Bessy, Stephane
    Paul, Christophe
    Perez, Anthony
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (16) : 1732 - 1744
  • [4] A Polynomial Kernel for Block Graph Deletion
    Kim, Eun Jung
    Kwon, O-Joung
    ALGORITHMICA, 2017, 79 (01) : 251 - 270
  • [5] A Polynomial Kernel for Block Graph Deletion
    Eun Jung Kim
    O-Joung Kwon
    Algorithmica, 2017, 79 : 251 - 270
  • [6] Polynomial Kernel for Interval Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [7] Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs
    Chakraborty, Sankardeep
    Jo, Seungbum
    Sadakane, Kunihiko
    Satti, Srinivasa Rao
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (06) : 705 - 722
  • [8] Structure and linear time recognition of 3-leaf powers
    Brandstädt, A
    Le, VB
    INFORMATION PROCESSING LETTERS, 2006, 98 (04) : 133 - 138
  • [9] A Polynomial Kernel for PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    ALGORITHMS - ESA 2012, 2012, 7501 : 467 - 478
  • [10] A Polynomial Kernel for Bipartite Permutation Vertex Deletion
    Derbisz, Jan
    Kanesh, Lawqueen
    Madathil, Jayakrishnan
    Sahu, Abhishek
    Saurabh, Saket
    Verma, Shaily
    ALGORITHMICA, 2022, 84 (11) : 3246 - 3275