For a non-negative integer ℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell $$\end{document}, the ℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell $$\end{document}-leaf power of a tree T is a simple graph G on the leaves of T such that two vertices are adjacent in G if and only if their distance in T is at most ℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell $$\end{document}. We provide a polynomial kernel for the problem of deciding whether we can delete at most k vertices to make an input graph a 3-leaf power of some tree. More specifically, we present a polynomial-time algorithm for an input instance (G, k) for the problem to output an equivalent instance (G′,k′)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(G',k')$$\end{document} such that k′⩽k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k'\leqslant k$$\end{document} and G′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G'$$\end{document} has at most O(k14)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(k^{14})$$\end{document} vertices.
机构:
Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Ahn, Jungho
Eiben, Eduard
论文数: 0引用数: 0
h-index: 0
机构:
Royal Holloway Univ London, Dept Comp Sci, Egham, EnglandInst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Eiben, Eduard
Kwon, O. -Joung
论文数: 0引用数: 0
h-index: 0
机构:
Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Hanyang Univ, Dept Math, Seoul, South KoreaInst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Kwon, O. -Joung
Oum, Sang-Il
论文数: 0引用数: 0
h-index: 0
机构:
Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea