Stability and instability of Ricci solitons

被引:0
|
作者
Klaus Kröncke
机构
[1] Universität Potsdam,Institut für Mathematik
关键词
53C44; 58E11; 37C75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the volume-normalized Ricci flow close to compact shrinking Ricci solitons. We show that if a compact Ricci soliton (M,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g)$$\end{document} is a local maximum of Perelman’s shrinker entropy, any normalized Ricci flow starting close to it exists for all time and converges towards a Ricci soliton. If g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} is not a local maximum of the shrinker entropy, we show that there exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues of results in the Ricci-flat and in the Einstein case (Haslhofer and Müller, arXiv:1301.3219, 2013; Kröncke, arXiv:1312.2224, 2013).
引用
收藏
页码:265 / 287
页数:22
相关论文
共 50 条
  • [41] Generalized Ricci Solitons
    Nurowski, Pawel
    Randall, Matthew
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) : 1280 - 1345
  • [42] A note on Ricci solitons
    S. E. Stepanov
    V. N. Shelepova
    Mathematical Notes, 2009, 86
  • [43] Ricci almost solitons
    Pigola, Stefano
    Rigoli, Marco
    Rimoldi, Michele
    Setti, Alberto G.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (04) : 757 - 799
  • [44] Geometry of Ricci Solitons*
    Huai-Dong Cao
    Chinese Annals of Mathematics, Series B, 2006, 27 : 121 - 142
  • [45] Generalized Ricci Solitons
    Paweł  Nurowski
    Matthew Randall
    The Journal of Geometric Analysis, 2016, 26 : 1280 - 1345
  • [46] On the Ricci curvature of steady gradient Ricci solitons
    Guo, Hongxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) : 497 - 501
  • [47] ε-REGULARITY FOR SHRINKING RICCI SOLITONS AND RICCI FLOWS
    Ge, Huabin
    Jiang, Wenshuai
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (05) : 1231 - 1256
  • [48] EXPANDING RICCI SOLITONS WITH PINCHED RICCI CURVATURE
    Ma, Li
    KODAI MATHEMATICAL JOURNAL, 2011, 34 (01) : 140 - 143
  • [49] Ricci flows and Ricci solitons on η-Einstein manifolds
    Bhattacharyya, Arindam
    De, Tapan
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 14 - 21
  • [50] CONFORMALLY KAHLER RICCI SOLITONS AND BASE METRICS FOR WARPED PRODUCT RICCI SOLITONS
    Maschler, Gideon
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 286 (02) : 361 - 384