Stability and instability of Ricci solitons

被引:0
|
作者
Klaus Kröncke
机构
[1] Universität Potsdam,Institut für Mathematik
关键词
53C44; 58E11; 37C75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the volume-normalized Ricci flow close to compact shrinking Ricci solitons. We show that if a compact Ricci soliton (M,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g)$$\end{document} is a local maximum of Perelman’s shrinker entropy, any normalized Ricci flow starting close to it exists for all time and converges towards a Ricci soliton. If g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} is not a local maximum of the shrinker entropy, we show that there exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues of results in the Ricci-flat and in the Einstein case (Haslhofer and Müller, arXiv:1301.3219, 2013; Kröncke, arXiv:1312.2224, 2013).
引用
收藏
页码:265 / 287
页数:22
相关论文
共 50 条
  • [31] A note on Ricci solitons
    Stepanov, Sergey E.
    Shelepova, V. N.
    MATHEMATICAL NOTES, 2009, 86 (3-4) : 447 - 450
  • [32] Homogeneous Ricci solitons
    Jablonski, Michael
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 699 : 159 - 182
  • [33] On Gradient Ricci Solitons
    Munteanu, Ovidiu
    Sesum, Natasa
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 539 - 561
  • [34] A note on Ricci solitons
    Deshmukh, Sharief
    Alodan, Haila
    Al-Sodais, Hana
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 48 - 55
  • [35] Geometry of Ricci Solitons
    Huai-Dong CAO (Dedicated to the memory of Shiing-Shen Cherri)
    Chinese Annals of Mathematics, 2006, (02) : 121 - 142
  • [36] On hyperbolic Ricci solitons
    Fasihi-Ramandi, Ghodratallah
    Azami, Shahroud
    Choudhary, Majid Ali
    CHAOS SOLITONS & FRACTALS, 2025, 193
  • [37] ON HOMOGENEOUS RICCI SOLITONS
    Lafuente, Ramiro
    Lauret, Jorge
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (02): : 399 - 419
  • [38] A Note on Ricci Solitons
    Deshmukh, Sharief
    Alsodais, Hana
    SYMMETRY-BASEL, 2020, 12 (02):
  • [39] Geometry of Ricci solitons
    Cao, Huai-Dong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) : 121 - 142
  • [40] On Gradient Ricci Solitons
    Ovidiu Munteanu
    Natasa Sesum
    Journal of Geometric Analysis, 2013, 23 : 539 - 561