Stability and instability of Ricci solitons

被引:0
|
作者
Klaus Kröncke
机构
[1] Universität Potsdam,Institut für Mathematik
关键词
53C44; 58E11; 37C75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the volume-normalized Ricci flow close to compact shrinking Ricci solitons. We show that if a compact Ricci soliton (M,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g)$$\end{document} is a local maximum of Perelman’s shrinker entropy, any normalized Ricci flow starting close to it exists for all time and converges towards a Ricci soliton. If g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} is not a local maximum of the shrinker entropy, we show that there exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues of results in the Ricci-flat and in the Einstein case (Haslhofer and Müller, arXiv:1301.3219, 2013; Kröncke, arXiv:1312.2224, 2013).
引用
收藏
页码:265 / 287
页数:22
相关论文
共 50 条