Left w-Core Inverses in Rings with Involution

被引:0
|
作者
Huihui Zhu
Chengcheng Wang
Qing-Wen Wang
机构
[1] School of Mathematics,Department of Mathematics and Newtouch Center for Mathematics
[2] Hefei University of Technology,undefined
[3] Shanghai University,undefined
[4] Collaborative Innovation Center for the Marine Artificial Intelligence,undefined
[5] Shanghai University,undefined
来源
关键词
-core inverses; right ; -core inverses; left inverses along an element; -inverses; Moore–Penrose inverses; 15A09; 16W10;
D O I
暂无
中图分类号
学科分类号
摘要
In Zhu et al. (Linear Multilinear Algebra 71:528–544, 2023), the authors described the left w-core inverse by principal ideals in ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring, and asked whether it can be defined by the solution of equations. In this paper, we answer the question in the positive. For any ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring R and a,w∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,w\in R$$\end{document}, the element a is called left w-core invertible if there is some x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} satisfying awxa=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$awxa=a$$\end{document}, xawa=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xawa=a$$\end{document} and (awx)∗=awx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(awx)^{*}=awx$$\end{document}. Several criteria for left w-core inverses are presented. Among of these, it is proved that a is left w-core invertible if and only if w is left invertible along a, a (or aw) is {1,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,3\}$$\end{document}-invertible and a∈awR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in awR$$\end{document}. Also, the relations among left w-core inverses, w-core inverses, and other generalized inverses are established. As applications, several characterizations for the Moore–Penrose inverse, the core inverse, and the pseudo-core inverse are given.
引用
收藏
相关论文
共 50 条
  • [41] MIXED-TYPE REVERSE ORDER LAWS FOR THE GROUP INVERSES IN RINGS WITH INVOLUTION
    Mosic, Dijana
    Djordjevic, Dragan S.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2016, 53 (02) : 138 - 156
  • [42] GENERALIZED JORDAN LEFT DERIVATIONS IN RINGS WITH INVOLUTION
    Oukhtite, Lahcen
    DEMONSTRATIO MATHEMATICA, 2012, 45 (04) : 807 - 812
  • [43] Mixed-type reverse order laws for generalized inverses in rings with involution
    Mosic, Dijana
    Djordjevic, Dragan S.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4): : 641 - 650
  • [44] Star, sharp, core and dual core partial order in rings with involution
    Rakic, Dragan S.
    Djordjevic, Dragan S.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 800 - 818
  • [45] Properties of core-EP order in rings with involution
    Dolinar, Gregor
    Kuzma, Bojan
    Marovt, Janko
    Ungor, Burcu
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 715 - 736
  • [46] Properties of core-EP order in rings with involution
    Gregor Dolinar
    Bojan Kuzma
    Janko Marovt
    Burcu Ungor
    Frontiers of Mathematics in China, 2019, 14 : 715 - 736
  • [47] Jordan left *-centralizers of prime and semiprime rings with involution
    Ali S.
    Dar N.A.
    Vukman J.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 609 - 624
  • [48] On *-DMP inverses in a ring with involution
    Chen, Huanyin
    Zou, Honglin
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 5006 - 5016
  • [49] The high-temperature degradation mechanism of W-core SiC fibers
    Wu, L. J.
    Zhang, Y.
    Zhang, K.
    Huang, H.
    Wang, M. J.
    Wang, L. P.
    Qi, J. L.
    Lin, J. Y.
    Wen, M.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (02) : 245 - 260
  • [50] Left and right-Drazin inverses in rings and operator algebras
    Ren, Yanxun
    Jiang, Lining
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (04)