Left w-Core Inverses in Rings with Involution

被引:0
|
作者
Huihui Zhu
Chengcheng Wang
Qing-Wen Wang
机构
[1] School of Mathematics,Department of Mathematics and Newtouch Center for Mathematics
[2] Hefei University of Technology,undefined
[3] Shanghai University,undefined
[4] Collaborative Innovation Center for the Marine Artificial Intelligence,undefined
[5] Shanghai University,undefined
来源
关键词
-core inverses; right ; -core inverses; left inverses along an element; -inverses; Moore–Penrose inverses; 15A09; 16W10;
D O I
暂无
中图分类号
学科分类号
摘要
In Zhu et al. (Linear Multilinear Algebra 71:528–544, 2023), the authors described the left w-core inverse by principal ideals in ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring, and asked whether it can be defined by the solution of equations. In this paper, we answer the question in the positive. For any ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring R and a,w∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,w\in R$$\end{document}, the element a is called left w-core invertible if there is some x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} satisfying awxa=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$awxa=a$$\end{document}, xawa=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xawa=a$$\end{document} and (awx)∗=awx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(awx)^{*}=awx$$\end{document}. Several criteria for left w-core inverses are presented. Among of these, it is proved that a is left w-core invertible if and only if w is left invertible along a, a (or aw) is {1,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,3\}$$\end{document}-invertible and a∈awR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in awR$$\end{document}. Also, the relations among left w-core inverses, w-core inverses, and other generalized inverses are established. As applications, several characterizations for the Moore–Penrose inverse, the core inverse, and the pseudo-core inverse are given.
引用
收藏
相关论文
共 50 条
  • [31] Characterizations for pseudo core inverses in a ring with involution
    Zhu, Huihui
    Patricio, Pedro
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (06): : 1109 - 1120
  • [32] A new class of generalized inverses in semigroups and rings with involution
    Zhu, Huihui
    Wu, Liyun
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) : 2098 - 2113
  • [33] Constructing group inverse and MP-inverse of the product of some generalized inverses via w-core inverse
    Cao, Liufeng
    Yao, Hua
    Wei, Junchao
    FILOMAT, 2024, 38 (27) : 9519 - 9535
  • [34] Weighted pseudo core inverses in rings
    Zhu, Huihui
    Wang, Qing-Wen
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (12): : 2434 - 2447
  • [35] The w-core inverse of a product and its applications
    Yang, Yuxuan
    Zhu, Huihui
    FILOMAT, 2023, 37 (14) : 4587 - 4601
  • [36] Core Partial Order in Rings with Involution
    Zhang, Xiaoxiang
    Xu, Sanzhang
    Chen, Jianlong
    FILOMAT, 2017, 31 (18) : 5695 - 5701
  • [37] Core and strongly core orthogonal elements in rings with involution
    Liu, Ying
    Liu, Xiaoji
    Jin, Hongwei
    FILOMAT, 2024, 38 (24) : 8411 - 8432
  • [38] W-CORE: A wavelet-based compression/reconstruction technique
    Saem-El-Dahr, Z
    Micheli-Tzanakou, E
    PROCEEDINGS OF THE IEEE 30TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 2004, : 89 - 90
  • [39] The (j, m)-core inverse in rings with involution
    Xu, Sanzhang
    Chen, Jianlong
    Mosic, Dijana
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (05): : 1676 - 1685
  • [40] Core-EP inverse in rings with involution
    Mosic, Dijana
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (3-4): : 427 - 443