Left w-Core Inverses in Rings with Involution

被引:0
|
作者
Huihui Zhu
Chengcheng Wang
Qing-Wen Wang
机构
[1] School of Mathematics,Department of Mathematics and Newtouch Center for Mathematics
[2] Hefei University of Technology,undefined
[3] Shanghai University,undefined
[4] Collaborative Innovation Center for the Marine Artificial Intelligence,undefined
[5] Shanghai University,undefined
来源
关键词
-core inverses; right ; -core inverses; left inverses along an element; -inverses; Moore–Penrose inverses; 15A09; 16W10;
D O I
暂无
中图分类号
学科分类号
摘要
In Zhu et al. (Linear Multilinear Algebra 71:528–544, 2023), the authors described the left w-core inverse by principal ideals in ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring, and asked whether it can be defined by the solution of equations. In this paper, we answer the question in the positive. For any ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring R and a,w∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,w\in R$$\end{document}, the element a is called left w-core invertible if there is some x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} satisfying awxa=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$awxa=a$$\end{document}, xawa=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xawa=a$$\end{document} and (awx)∗=awx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(awx)^{*}=awx$$\end{document}. Several criteria for left w-core inverses are presented. Among of these, it is proved that a is left w-core invertible if and only if w is left invertible along a, a (or aw) is {1,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,3\}$$\end{document}-invertible and a∈awR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in awR$$\end{document}. Also, the relations among left w-core inverses, w-core inverses, and other generalized inverses are established. As applications, several characterizations for the Moore–Penrose inverse, the core inverse, and the pseudo-core inverse are given.
引用
收藏
相关论文
共 50 条
  • [21] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Huihui ZHU
    QingWen WANG
    ChineseAnnalsofMathematics,SeriesB, 2021, (04) : 613 - 624
  • [22] The Pseudo Core Inverses of Differences and Products of Projections in Rings with Involution
    Chen, Xiaofeng
    Chen, Jianlong
    Zhou, Yukun
    FILOMAT, 2021, 35 (01) : 181 - 189
  • [23] Weak core inverses and pseudo core inverses in a ring with involution
    Zhou, Yukun
    Chen, Jianlong
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6876 - 6890
  • [24] Left and right hybrid (b, c)-core inverses in semigroups with involution
    Zhu, Huihui
    Hong, Chenxiang
    Mosic, Dijana
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [25] THE w-CORE-EP INVERSE IN RINGS WITH INVOLUTION
    Mosic, Dijana
    Zhu, Huihui
    Wu, Liyun
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (02): : 545 - 565
  • [26] FURTHER RESULTS ON GENERALIZED INVERSES IN RINGS WITH INVOLUTION
    Castro-Gonzalez, N.
    Chen, Jianlong
    Wang, Long
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 118 - 134
  • [27] Representations of the (b, c)-Inverses in Rings with Involution
    Ke, Yuanyuan
    Gao, Yuefeng
    Chen, Jianlong
    FILOMAT, 2017, 31 (09) : 2867 - 2875
  • [28] Generalized Inverses and Solutions to Equations in Rings with Involution
    Sui, Yue
    Wei, Junchao
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01): : 15 - 30
  • [29] On the Covariance of Moore-Penrose Inverses in Rings with Involution
    Mahzoon, Hesam
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [30] Idempotents Generated by Weighted Generalized Inverses in Rings With Involution
    Song, Yaoyao
    Zhu, Huihui
    FILOMAT, 2020, 34 (09) : 2907 - 2914