Left w-Core Inverses in Rings with Involution

被引:0
|
作者
Huihui Zhu
Chengcheng Wang
Qing-Wen Wang
机构
[1] School of Mathematics,Department of Mathematics and Newtouch Center for Mathematics
[2] Hefei University of Technology,undefined
[3] Shanghai University,undefined
[4] Collaborative Innovation Center for the Marine Artificial Intelligence,undefined
[5] Shanghai University,undefined
来源
关键词
-core inverses; right ; -core inverses; left inverses along an element; -inverses; Moore–Penrose inverses; 15A09; 16W10;
D O I
暂无
中图分类号
学科分类号
摘要
In Zhu et al. (Linear Multilinear Algebra 71:528–544, 2023), the authors described the left w-core inverse by principal ideals in ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring, and asked whether it can be defined by the solution of equations. In this paper, we answer the question in the positive. For any ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-ring R and a,w∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,w\in R$$\end{document}, the element a is called left w-core invertible if there is some x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} satisfying awxa=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$awxa=a$$\end{document}, xawa=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xawa=a$$\end{document} and (awx)∗=awx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(awx)^{*}=awx$$\end{document}. Several criteria for left w-core inverses are presented. Among of these, it is proved that a is left w-core invertible if and only if w is left invertible along a, a (or aw) is {1,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,3\}$$\end{document}-invertible and a∈awR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in awR$$\end{document}. Also, the relations among left w-core inverses, w-core inverses, and other generalized inverses are established. As applications, several characterizations for the Moore–Penrose inverse, the core inverse, and the pseudo-core inverse are given.
引用
收藏
相关论文
共 50 条
  • [11] Pseudo core inverses in rings with involution
    Gao, Yuefeng
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 38 - 50
  • [12] Characterizations of core and dual core inverses in rings with involution
    Li, Tingting
    Chen, Jianlong
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 717 - 730
  • [13] New characterizations for core inverses in rings with involution
    Xu, Sanzhang
    Chen, Jianlong
    Zhang, Xiaoxiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 231 - 246
  • [14] New characterizations for core inverses in rings with involution
    Sanzhang Xu
    Jianlong Chen
    Xiaoxiang Zhang
    Frontiers of Mathematics in China, 2017, 12 : 231 - 246
  • [15] Characterizations of weighted core inverses in rings with involution
    Li, Tingting
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (10)
  • [16] The core inverses of differences and products of projections in rings with involution
    Tingting Li
    Jianlong Chen
    Dijana Mosić
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3283 - 3296
  • [17] CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION
    Li, Wende
    Chen, Jianlong
    Zhou, Yukun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (03) : 793 - 807
  • [18] The core inverses of differences and products of projections in rings with involution
    Li, Tingting
    Chen, Jianlong
    Mosic, Dijana
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3283 - 3296
  • [19] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Zhu, Huihui
    Wang, Qing-Wen
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (04) : 613 - 624
  • [20] Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution
    Huihui Zhu
    Qing-Wen Wang
    Chinese Annals of Mathematics, Series B, 2021, 42 : 613 - 624