Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images

被引:0
|
作者
Kensei Matsuo
Takeshi Nakaura
Kosuke Morita
Hiroyuki Uetani
Yasunori Nagayama
Masafumi Kidoh
Masamichi Hokamura
Yuichi Yamashita
Kensuke Shinoda
Mitsuharu Ueda
Akitake Mukasa
Toshinori Hirai
机构
[1] Kumamoto University Hospital,Department of Central Radiology
[2] Kumamoto University,Department of Diagnostic Radiology, Graduate School of Medical Sciences
[3] Canon Medical Systems Corporation,MRI Systems Division
[4] Canon Medical Systems Corporation,Department of Neurology, Graduate School of Medical Sciences
[5] Kumamoto University,Department of Neurosurgery, Graduate School of Medical Sciences
[6] Kumamoto University,undefined
来源
Neuroradiology | 2023年 / 65卷
关键词
Retrospective studies; Magnetic resonance imaging; Echo-planar imaging; Diffusion; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1619 / 1629
页数:10
相关论文
共 50 条
  • [41] Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality
    Lee, Kang-Lung
    Kessler, Dimitri A.
    Dezonie, Simon
    Chishaya, Wellington
    Shepherd, Christopher
    Carmo, Bruno
    Graves, Martin J.
    Barrett, Tristan
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 166
  • [42] Learning ADC maps from accelerated radial k-space diffusion-weighted MRI in mice using a deep CNN-transformer model
    Li, Yuemeng
    Joaquim, Miguel Romanello
    Pickup, Stephen
    Song, Hee Kwon
    Zhou, Rong
    Fan, Yong
    MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (01) : 105 - 117
  • [43] Deep learning-based harmonization and super-resolution of Landsat-8 and Sentinel-2 images
    Sambandham, Venkatesh Thirugnana
    Kirchheim, Konstantin
    Ortmeier, Frank
    Mukhopadhaya, Sayan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 212 : 274 - 288
  • [44] Enhanced plasmonic scattering imaging via deep learning-based super-resolution reconstruction for exosome imaging
    Huo, Zhaochen
    Chen, Bing
    Wang, Zhan
    Li, Yu
    He, Lei
    Hu, Boheng
    Li, Haoliang
    Wang, Pengfei
    Yao, Jianning
    Xu, Feng
    Li, Ya
    Yang, Xiaonan
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (29) : 6773 - 6787
  • [45] Deep Learning-Based Single Image Super-Resolution: An Investigation for Dense Scene Reconstruction with UAS Photogrammetry
    Pashaei, Mohammad
    Starek, Michael J.
    Kamangir, Hamid
    Berryhill, Jacob
    REMOTE SENSING, 2020, 12 (11)
  • [46] Tree Species Classification in UAV Remote Sensing Images Based on Super-Resolution Reconstruction and Deep Learning
    Huang, Yingkang
    Wen, Xiaorong
    Gao, Yuanyun
    Zhang, Yanli
    Lin, Guozhong
    REMOTE SENSING, 2023, 15 (11)
  • [47] Image super-resolution model using an improved deep learning-based facial expression analysis
    Pyoung Won Kim
    Multimedia Systems, 2021, 27 : 615 - 625
  • [49] Clinical Assessment of Deep Learning-based Super-Resolution for 3D Volumetric Brain MRI
    Rudie, Jeffrey D.
    Gleason, Tyler
    Barkovich, Matthew J.
    Wilson, David M.
    Shankaranarayanan, Ajit
    Zhang, Tao
    Wang, Long
    Gong, Enhao
    Zaharchuk, Greg
    Villanueva-Meyer, Javier E.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (02)
  • [50] Impact of a Deep Learning-based Super-resolution Image Reconstruction Technique on High-contrast Computed Tomography: A Phantom Study
    Sato, Hideyuki
    Fujimoto, Shinichiro
    Tomizawa, Nobuo
    Inage, Hidekazu
    Yokota, Takuya
    Kudo, Hikaru
    Fan, Ruiheng
    Kawamoto, Keiichi
    Honda, Yuri
    Kobayashi, Takayuki
    Minamino, Tohru
    Kogure, Yosuke
    ACADEMIC RADIOLOGY, 2023, 30 (11) : 2657 - 2665