Image super-resolution model using an improved deep learning-based facial expression analysis

被引:0
|
作者
Pyoung Won Kim
机构
[1] Incheon National University,Department of Korean Language Education, College of Education
来源
Multimedia Systems | 2021年 / 27卷
关键词
Face; Facial expression analysis; Image super-resolution; Emotions;
D O I
暂无
中图分类号
学科分类号
摘要
Image upsampling and noise removal are important tasks in digital image processing. Single-image upsampling and denoising influence the quality of the resulting images. Image upsampling is known as super-resolution (SR) and referred to as the restoration of a higher-resolution image from a given low-resolution image. In facial expression analysis, the resolution of the original image directly affects the reliability and validity of the emotional analysis. Hence, optimization of the resolution of the extracted original image during emotion analysis is important. In this study, a model is proposed, which applies an image super-resolution method to an algorithm that classifies emotions from facial expressions.
引用
收藏
页码:615 / 625
页数:10
相关论文
共 50 条
  • [2] Deep Learning-Based Blind Image Super-Resolution using Iterative Networks
    Yaar, Asfand
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [3] Accelerating topology optimization using deep learning-based image super-resolution
    Lim, Jaekyung
    Jung, Kyusoon
    Jung, Youngsuk
    Kim, Do-Nyun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [4] Performance Analysis of JPEG XR with Deep Learning-Based Image Super-Resolution
    Min, Taingliv
    Aramvith, Supavadee
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1192 - 1197
  • [5] Improving deep learning-based image super-resolution with residual learning and perceptual loss using SRGAN model
    Abbas, Rehman
    Gu, Naijie
    SOFT COMPUTING, 2023, 27 (21) : 16041 - 16057
  • [6] Improving deep learning-based image super-resolution with residual learning and perceptual loss using SRGAN model
    Rehman Abbas
    Naijie Gu
    Soft Computing, 2023, 27 : 16041 - 16057
  • [7] Learning-Based Single Image Super-Resolution with Improved Edge Information
    G. Mandal
    D. Bhattacharjee
    Pattern Recognition and Image Analysis, 2020, 30 : 391 - 400
  • [8] Learning-Based Single Image Super-Resolution with Improved Edge Information
    Mandal, G.
    Bhattacharjee, D.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (03) : 391 - 400
  • [9] Deep learning-based magnetic resonance image super-resolution: a survey
    Ji Z.
    Zou B.
    Kui X.
    Liu J.
    Zhao W.
    Zhu C.
    Dai P.
    Dai Y.
    Neural Computing and Applications, 2024, 36 (21) : 12725 - 12752
  • [10] A comprehensive review of deep learning-based single image super-resolution
    Bashir, Syed Muhammad Arsalan
    Wang, Yi
    Khan, Mahrukh
    Niu, Yilong
    PEERJ COMPUTER SCIENCE, 2021,