Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images

被引:0
|
作者
Kensei Matsuo
Takeshi Nakaura
Kosuke Morita
Hiroyuki Uetani
Yasunori Nagayama
Masafumi Kidoh
Masamichi Hokamura
Yuichi Yamashita
Kensuke Shinoda
Mitsuharu Ueda
Akitake Mukasa
Toshinori Hirai
机构
[1] Kumamoto University Hospital,Department of Central Radiology
[2] Kumamoto University,Department of Diagnostic Radiology, Graduate School of Medical Sciences
[3] Canon Medical Systems Corporation,MRI Systems Division
[4] Canon Medical Systems Corporation,Department of Neurology, Graduate School of Medical Sciences
[5] Kumamoto University,Department of Neurosurgery, Graduate School of Medical Sciences
[6] Kumamoto University,undefined
来源
Neuroradiology | 2023年 / 65卷
关键词
Retrospective studies; Magnetic resonance imaging; Echo-planar imaging; Diffusion; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1619 / 1629
页数:10
相关论文
共 50 条
  • [31] Deep learning-based super-resolution and de-noising for XMM-newton images
    Sweere, Sam F.
    Valtchanov, Ivan
    Lieu, Maggie
    Vojtekova, Antonia
    Verdugo, Eva
    Santos-Lleo, Maria
    Pacaud, Florian
    Briassouli, Alexia
    Perez, Daniel Campora
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (03) : 4054 - 4069
  • [32] Deep learning-based blind image super-resolution with iterative kernel reconstruction and noise estimation
    Ates, Hasan F.
    Yildirim, Suleyman
    Gunturk, Bahadir K.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 233
  • [33] Deep learning-based super-resolution images for synchronous measurement of temperature and deformation at elevated temperature
    Tang, Yunlong
    Zhang, Jinsong
    Yue, Mengkun
    Qu, Zhe
    Wang, Xian
    Gui, Yewei
    Feng, Xue
    OPTIK, 2021, 226
  • [34] Super-resolution reconstruction algorithm for aerial image data management based on deep learning
    Xie, Bing
    Niu, Fengjuan
    DISTRIBUTED AND PARALLEL DATABASES, 2022, 40 (04) : 699 - 716
  • [35] Super-resolution reconstruction algorithm for aerial image data management based on deep learning
    Bing Xie
    Fengjuan Niu
    Distributed and Parallel Databases, 2022, 40 : 699 - 716
  • [36] A robust super-resolution reconstruction model of turbulent flow data based on deep learning
    Zhou, Zhideng
    Li, Binglin
    Yang, Xiaolei
    Yang, Zixuan
    COMPUTERS & FLUIDS, 2022, 239
  • [37] Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images
    Shah, Zafran Hussain
    Mueller, Marcel
    Wang, Tung-Cheng
    Scheidig, Philip Maurice
    Schneider, Axel
    Schuettpelz, Mark
    Huser, Thomas
    Schenck, Wolfram
    PHOTONICS RESEARCH, 2021, 9 (05) : B168 - B181
  • [38] Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images
    ZAFRAN HUSSAIN SHAH
    MARCEL MüLLER
    TUNG-CHENG WANG
    PHILIP MAURICE SCHEIDIG
    AXEL SCHNEIDER
    MARK SCHüTTPELZ
    THOMAS HUSER
    WOLFRAM SCHENCK
    Photonics Research, 2021, 9 (05) : 570 - 583
  • [39] Robust deep learning-based multi-image super-resolution using inpainting
    Yau, Henry
    Du, Xian
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (01)
  • [40] Fast single image super-resolution using estimated low-frequency k-space data in MRI
    Luo, Jianhua
    Mou, Zhiying
    Qin, Binjie
    Li, Wanqing
    Yang, Feng
    Robini, Marc
    Zhu, Yuemin
    MAGNETIC RESONANCE IMAGING, 2017, 40 : 1 - 11