Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images

被引:0
|
作者
Kensei Matsuo
Takeshi Nakaura
Kosuke Morita
Hiroyuki Uetani
Yasunori Nagayama
Masafumi Kidoh
Masamichi Hokamura
Yuichi Yamashita
Kensuke Shinoda
Mitsuharu Ueda
Akitake Mukasa
Toshinori Hirai
机构
[1] Kumamoto University Hospital,Department of Central Radiology
[2] Kumamoto University,Department of Diagnostic Radiology, Graduate School of Medical Sciences
[3] Canon Medical Systems Corporation,MRI Systems Division
[4] Canon Medical Systems Corporation,Department of Neurology, Graduate School of Medical Sciences
[5] Kumamoto University,Department of Neurosurgery, Graduate School of Medical Sciences
[6] Kumamoto University,undefined
来源
Neuroradiology | 2023年 / 65卷
关键词
Retrospective studies; Magnetic resonance imaging; Echo-planar imaging; Diffusion; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1619 / 1629
页数:10
相关论文
共 50 条
  • [21] Deep learning-based single image super-resolution for low-field MR brain images
    M. L. de Leeuw den Bouter
    G. Ippolito
    T. P. A. O’Reilly
    R. F. Remis
    M. B. van Gijzen
    A. G. Webb
    Scientific Reports, 12
  • [22] Deep learning-based single image super-resolution for low-field MR brain images
    den Bouter, M. L. de Leeuw
    Ippolito, G.
    O'Reilly, T. P. A.
    Remis, R. F.
    van Gijzen, M. B.
    Webb, A. G.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [23] Cardiac MR Motion Artefact Correction from K-space Using Deep Learning-Based Reconstruction
    Oksuz, Ilkay
    Clough, James
    Bustin, Aurelien
    Cruz, Gastao
    Prieto, Claudia
    Botnar, Rene
    Rueckert, Daniel
    Schnabel, Julia A.
    King, Andrew P.
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION, MLMIR 2018, 2018, 11074 : 21 - 29
  • [24] RESOLUTION ENHANCEMENT OF HYPERSPECTRAL IMAGES USING A LEARNING-BASED SUPER-RESOLUTION MAPPING TECHNIQUE
    Mianji, Fereidoun A.
    Zhang, Ye
    Gu, Yanfeng
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2115 - 2118
  • [25] Deep learning-based infrared imaging degradation model identification and super-resolution reconstruction
    Cao J.
    Ding Q.
    Zou D.
    Qin H.
    Luo H.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2024, 53 (05):
  • [26] Super-resolution reconstruction of vertebrate microfossil computed tomography images based on deep learning
    Hou, Yemao
    Canul-Ku, Mario
    Cui, Xindong
    Zhu, Min
    X-RAY SPECTROMETRY, 2024, 53 (05) : 405 - 414
  • [27] Learning-Based Video Super-Resolution Reconstruction Using Particle Swarm Optimization
    Chen, Hsuan-Ying
    Leou, Jin-Jang
    2011 IEEE 13TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2011,
  • [28] Deep Learning-Based Blind Image Super-Resolution using Iterative Networks
    Yaar, Asfand
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [29] Accelerating topology optimization using deep learning-based image super-resolution
    Lim, Jaekyung
    Jung, Kyusoon
    Jung, Youngsuk
    Kim, Do-Nyun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [30] Space-Time Super-Resolution Using Deep Learning Based Framework
    Sharma, Manoj
    Chaudhury, Santanu
    Lall, Brejesh
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017, 2017, 10597 : 582 - 590