Fractional Diffusion on Bounded Domains

被引:1
|
作者
Ozlem Defterli
Marta D’Elia
Qiang Du
Max Gunzburger
Rich Lehoucq
Mark M. Meerschaert
机构
[1] Michigan State University,Department of Statistics and Probability
[2] Optimization and Uncertainty Quantification,Sandia National Laboratories
[3] Fu Foundation School of Engineering and Applied Sciences Columbia University,Department of Applied Physics and Applied Mathematics
[4] Florida State University,Department of Scientific Computing
[5] Computational Mathematics,Sandia National Laboratories
[6] Michigan State University,Department of Statistics and Probability
[7] Çankaya University,Department of Mathematics and Computer Science
[8] Pennsylvania State University,Department of Mathematics
关键词
Primary 35J05; Secondary 26A33; fractional diffusion; boundary value problem; nonlocal diffusion; well-posed equation;
D O I
暂无
中图分类号
学科分类号
摘要
The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.
引用
收藏
页码:342 / 360
页数:18
相关论文
共 50 条
  • [1] FRACTIONAL DIFFUSION ON BOUNDED DOMAINS
    Defterli, Ozlem
    D'Elia, Marta
    Du, Qiang
    Gunzburger, Max
    Lehoucq, Rich
    Meerschaert, Mark M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (02) : 342 - 360
  • [2] Space-time fractional diffusion on bounded domains
    Chen, Zhen-Qing
    Meerschaert, Mark M.
    Nane, Erkan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 479 - 488
  • [3] g-fractional diffusion models in bounded domains
    Angelani, L.
    Garra, R.
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [4] CLASSICAL, NONLOCAL, AND FRACTIONAL DIFFUSION EQUATIONS ON BOUNDED DOMAINS
    Burch, Nathanial
    Lehoucq, R. B.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2011, 9 (06) : 661 - 674
  • [5] G-Fractional Diffusion on Bounded Domains in Rd
    Angelani, Luca
    Garra, Roberto
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [6] A finite-volume scheme for fractional diffusion on bounded domains
    Bailo, Rafael
    Carrillo, Jose A.
    Fronzoni, Stefano
    Gomez-Castro, David
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2025, 36 (02) : 398 - 418
  • [7] A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains
    Matteo Bonforte
    Juan Luis Vázquez
    Archive for Rational Mechanics and Analysis, 2015, 218 : 317 - 362
  • [8] A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains
    Bonforte, Matteo
    Luis Vazquez, Juan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) : 317 - 362
  • [9] Fractional Laplacian in bounded domains
    Zoia, A.
    Rosso, A.
    Kardar, M.
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [10] Solution of the space-fractional diffusion equation on bounded domains of superdiffusive phenomena
    Monroy, Diego A.
    Raposo, Ernesto P.
    PHYSICAL REVIEW E, 2024, 110 (05)