Fractional Diffusion on Bounded Domains

被引:1
|
作者
Ozlem Defterli
Marta D’Elia
Qiang Du
Max Gunzburger
Rich Lehoucq
Mark M. Meerschaert
机构
[1] Michigan State University,Department of Statistics and Probability
[2] Optimization and Uncertainty Quantification,Sandia National Laboratories
[3] Fu Foundation School of Engineering and Applied Sciences Columbia University,Department of Applied Physics and Applied Mathematics
[4] Florida State University,Department of Scientific Computing
[5] Computational Mathematics,Sandia National Laboratories
[6] Michigan State University,Department of Statistics and Probability
[7] Çankaya University,Department of Mathematics and Computer Science
[8] Pennsylvania State University,Department of Mathematics
关键词
Primary 35J05; Secondary 26A33; fractional diffusion; boundary value problem; nonlocal diffusion; well-posed equation;
D O I
暂无
中图分类号
学科分类号
摘要
The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.
引用
收藏
页码:342 / 360
页数:18
相关论文
共 50 条
  • [41] Correction to: Fractional Schrödinger Equation in Bounded Domains and Applications
    Mohamed Ben Chrouda
    Mediterranean Journal of Mathematics, 2018, 15
  • [42] ROBUST BPX PRECONDITIONER FOR FRACTIONAL LAPLACIANS ON BOUNDED LIPSCHITZ DOMAINS
    Borthagaray, Juan Pablo
    Nochetto, Ricardo H.
    Wu, Shuonan
    Xu, Jinchao
    MATHEMATICS OF COMPUTATION, 2023, 92 (344) : 2439 - 2473
  • [43] POSITIVE BLOWUP SOLUTIONS FOR SOME FRACTIONAL SYSTEMS IN BOUNDED DOMAINS
    Alsaedi, Ramzi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [44] Convergence of fractional diffusion processes in extension domains
    Simone Creo
    Maria Rosaria Lancia
    Paola Vernole
    Journal of Evolution Equations, 2020, 20 : 109 - 139
  • [45] Convergence of fractional diffusion processes in extension domains
    Creo, Simone
    Lancia, Maria Rosaria
    Vernole, Paola
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 109 - 139
  • [46] Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains
    Ye, H.
    Liu, F.
    Anh, V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 652 - 660
  • [47] Modeling Long-Distance Forward and Backward Diffusion Processes in Tracer Transport Using the Fractional Laplacian on Bounded Domains
    Li, Zhipeng
    Tang, Hongwu
    Yuan, Saiyu
    Zhang, Huiming
    Kong, Lingzhong
    Sun, HongGuang
    FRACTAL AND FRACTIONAL, 2023, 7 (11)
  • [48] A global solution for a reaction-diffusion equation on bounded domains
    Khellat, Farhad
    Khormizi, Mahmud Beyk
    Applied Mathematics and Nonlinear Sciences, 2018, 3 (01) : 15 - 22
  • [50] Behaviour near extinction for the Fast Diffusion Equation on bounded domains
    Bonforte, Matteo
    Grillo, Gabriele
    Vazquez, Juan Luis
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (01): : 1 - 38