G-Fractional Diffusion on Bounded Domains in Rd

被引:1
|
作者
Angelani, Luca [1 ,2 ]
Garra, Roberto [3 ]
机构
[1] CNR, Ist Sistemi Complessi, Ple A Moro 2, I-00185 Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
关键词
fractional diffusion equation; first-passage time; g-fractional diffusion in bounded domain;
D O I
10.3390/fractalfract7030235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study g-fractional diffusion on bounded domains in R(d )with absorbing boundary conditions. A new general and explicit representation of the solution is obtained. We study the first-passage time distribution, showing the dependence on the particular choice of the function g. Then, we specialize the analysis to the interesting case of a rectangular domain. Finally, we briefly discuss the connection of this general theory with the physical application to the so-called fractional Dodson diffusion model, recently discussed in the literature.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] g-fractional diffusion models in bounded domains
    Angelani, L.
    Garra, R.
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [2] Fractional Diffusion on Bounded Domains
    Ozlem Defterli
    Marta D’Elia
    Qiang Du
    Max Gunzburger
    Rich Lehoucq
    Mark M. Meerschaert
    Fractional Calculus and Applied Analysis, 2015, 18 : 342 - 360
  • [3] FRACTIONAL DIFFUSION ON BOUNDED DOMAINS
    Defterli, Ozlem
    D'Elia, Marta
    Du, Qiang
    Gunzburger, Max
    Lehoucq, Rich
    Meerschaert, Mark M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (02) : 342 - 360
  • [4] BOUNDEDNESS OF HIGHER ORDER COMMUTATORS OF G-FRACTIONAL INTEGRAL AND G-FRACTIONAL MAXIMAL OPERATORS WITH G - BMO FUNCTIONS
    Ibrahimov, Elman J.
    Dadashova, Gulqayit A.
    Jafarova, Saadat Ar
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 325 - 341
  • [5] Space-time fractional diffusion on bounded domains
    Chen, Zhen-Qing
    Meerschaert, Mark M.
    Nane, Erkan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 479 - 488
  • [6] CLASSICAL, NONLOCAL, AND FRACTIONAL DIFFUSION EQUATIONS ON BOUNDED DOMAINS
    Burch, Nathanial
    Lehoucq, R. B.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2011, 9 (06) : 661 - 674
  • [7] Variational solution of fractional advection dispersion equations on bounded domains in Rd
    Ervin, Vincent J.
    Roop, John Paul
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (02) : 256 - 281
  • [8] A finite-volume scheme for fractional diffusion on bounded domains
    Bailo, Rafael
    Carrillo, Jose A.
    Fronzoni, Stefano
    Gomez-Castro, David
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2025, 36 (02) : 398 - 418
  • [9] Generalized g-fractional calculus and iterative methods
    Anastassiou, George A.
    Argyros, Ioannis K.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (01): : 17 - 26
  • [10] A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains
    Matteo Bonforte
    Juan Luis Vázquez
    Archive for Rational Mechanics and Analysis, 2015, 218 : 317 - 362