G-Fractional Diffusion on Bounded Domains in Rd

被引:1
|
作者
Angelani, Luca [1 ,2 ]
Garra, Roberto [3 ]
机构
[1] CNR, Ist Sistemi Complessi, Ple A Moro 2, I-00185 Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
关键词
fractional diffusion equation; first-passage time; g-fractional diffusion in bounded domain;
D O I
10.3390/fractalfract7030235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study g-fractional diffusion on bounded domains in R(d )with absorbing boundary conditions. A new general and explicit representation of the solution is obtained. We study the first-passage time distribution, showing the dependence on the particular choice of the function g. Then, we specialize the analysis to the interesting case of a rectangular domain. Finally, we briefly discuss the connection of this general theory with the physical application to the so-called fractional Dodson diffusion model, recently discussed in the literature.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Iterated convergence on Banach space valued functions of abstract g-fractional calculus
    Anastassiou, George A.
    Argyros, Ioannis K.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3667 - 3680
  • [32] Fractional potential: A new perspective on the fractional Laplacian problem on bounded domains
    Feng, Libo
    Turner, Ian
    Moroney, Timothy
    Liu, Fawang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [33] Generalized g-Fractional Calculus of Canavati-Type and Secant-Like Methods
    Anastassiou G.A.
    Argyros I.K.
    International Journal of Applied and Computational Mathematics, 2017, 3 (3) : 1605 - 1617
  • [34] Stochastic Differential Equations for Orthogonal Eigenvectors of (G, ε) -Wishart Process Related to Multivariate G-fractional Brownian Motion
    Belksier, Manel
    Boutabia, Hacene
    Bougherra, Rania
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [35] Nonlinear diffusion equations on bounded fractal domains
    Hu, JX
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (02): : 331 - 345
  • [36] PERTURBATION THEOREMS FOR FRACTIONAL CRITICAL EQUATIONS ON BOUNDED DOMAINS
    Alghanemi, Azeb
    Chtioui, Hichem
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 111 (02) : 159 - 178
  • [37] The Noncommutative Fractional Fourier Law in Bounded and Unbounded Domains
    Colombo, Fabrizio
    Gonzalez, Denis Deniz
    Pinton, Stefano
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (07)
  • [38] Fractional operators on the bounded symmetric domains of the Bergman spaces
    Ibrahim, Rabha W.
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2024, 9 (02): : 3810 - 3835
  • [39] Existence and multiplicity results for the fractional Laplacian in bounded domains
    Mugnai, Dimitri
    Pagliardini, Dayana
    ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (02) : 111 - 124
  • [40] The Noncommutative Fractional Fourier Law in Bounded and Unbounded Domains
    Fabrizio Colombo
    Denis Deniz González
    Stefano Pinton
    Complex Analysis and Operator Theory, 2021, 15