Generalized g-Fractional Calculus of Canavati-Type and Secant-Like Methods

被引:0
|
作者
Anastassiou G.A. [1 ]
Argyros I.K. [2 ]
机构
[1] Department of Mathematical Sciences, University of Memphis, Memphis, 38152, TN
[2] Department of Mathematical Sciences, Cameron University, Lawton, 73505, Ok
关键词
Banach space; Fractional calculus; Generalized fractional derivatives; Secant-like method; Semilocal-local convergence;
D O I
10.1007/s40819-016-0214-3
中图分类号
学科分类号
摘要
We present local and semilocal convergence results for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Finally, we present some applications from generalized g-fractional calculus involving Canavati-type functions. © 2016, Springer India Pvt. Ltd.
引用
收藏
页码:1605 / 1617
页数:12
相关论文
共 50 条
  • [1] Generalized g-fractional calculus and iterative methods
    Anastassiou, George A.
    Argyros, Ioannis K.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (01): : 17 - 26
  • [2] ON A SECANT-LIKE METHOD FOR SOLVING GENERALIZED EQUATIONS
    Argyros, Ioannis K.
    Hilout, Said
    [J]. MATHEMATICA BOHEMICA, 2008, 133 (03): : 313 - 320
  • [3] SECANT-LIKE METHOD FOR SOLVING GENERALIZED EQUATIONS
    Argyros, Ioannis K.
    Hilout, Said
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2009, 16 (04) : 469 - 478
  • [4] Secant-like methods for solving nonlinear integral equations of the Hammerstein type
    Hernández, MA
    Rubio, MJ
    Ezquerro, JA
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 245 - 254
  • [5] An analysis of the semilocal convergence for secant-like methods
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Velasco, A. I.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 883 - 892
  • [6] An improved convergence theorem for a class of Secant-like methods
    Ren, Hongmin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 472 - 481
  • [7] On a class of secant-like methods for solving nonlinear equations
    Ioannis K. Argyros
    [J]. Numerical Algorithms, 2010, 54 : 485 - 501
  • [8] On a class of secant-like methods for solving nonlinear equations
    Argyros, Ioannis K.
    [J]. NUMERICAL ALGORITHMS, 2010, 54 (04) : 485 - 501
  • [9] ENLARGING THE CONVERGENCE DOMAIN OF SECANT-LIKE METHODS FOR EQUATIONS
    Argyros, I. K.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Hilout, S.
    Magrenan, A. A.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 629 - 652
  • [10] Improving the domain of starting points for secant-like methods
    Ezquerro, J. A.
    Hernandez, M. A.
    Romero, N.
    Velasco, A. I.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3677 - 3692