FRACTIONAL DIFFUSION ON BOUNDED DOMAINS

被引:78
|
作者
Defterli, Ozlem [1 ,2 ]
D'Elia, Marta [3 ]
Du, Qiang [4 ,5 ]
Gunzburger, Max [6 ]
Lehoucq, Rich [7 ]
Meerschaert, Mark M. [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Ankaya Univ, Dept Math & Comp Sci, TR-06790 Ankara, Turkey
[3] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, Albuquerque, NM 87123 USA
[4] Columbia Univ, Fu Fdn Sch Engn & Appl Sci, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[6] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32309 USA
[7] Sandia Natl Labs, Computat Math, Albuquerque, NM 87123 USA
基金
美国国家科学基金会;
关键词
fractional diffusion; boundary value problem; nonlocal diffusion; well-posed equation; FINITE-DIFFERENCE APPROXIMATIONS; VOLUME-CONSTRAINED PROBLEMS; NONLOCAL DIFFUSION; NUMERICAL-SOLUTION; VECTOR CALCULUS; DISPERSION; EQUATIONS;
D O I
10.1515/fca-2015-0023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.
引用
收藏
页码:342 / 360
页数:19
相关论文
共 50 条
  • [1] Fractional Diffusion on Bounded Domains
    Ozlem Defterli
    Marta D’Elia
    Qiang Du
    Max Gunzburger
    Rich Lehoucq
    Mark M. Meerschaert
    Fractional Calculus and Applied Analysis, 2015, 18 : 342 - 360
  • [2] Space-time fractional diffusion on bounded domains
    Chen, Zhen-Qing
    Meerschaert, Mark M.
    Nane, Erkan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 479 - 488
  • [3] g-fractional diffusion models in bounded domains
    Angelani, L.
    Garra, R.
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [4] CLASSICAL, NONLOCAL, AND FRACTIONAL DIFFUSION EQUATIONS ON BOUNDED DOMAINS
    Burch, Nathanial
    Lehoucq, R. B.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2011, 9 (06) : 661 - 674
  • [5] G-Fractional Diffusion on Bounded Domains in Rd
    Angelani, Luca
    Garra, Roberto
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [6] A finite-volume scheme for fractional diffusion on bounded domains
    Bailo, Rafael
    Carrillo, Jose A.
    Fronzoni, Stefano
    Gomez-Castro, David
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2025, 36 (02) : 398 - 418
  • [7] A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains
    Matteo Bonforte
    Juan Luis Vázquez
    Archive for Rational Mechanics and Analysis, 2015, 218 : 317 - 362
  • [8] A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains
    Bonforte, Matteo
    Luis Vazquez, Juan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) : 317 - 362
  • [9] Fractional Laplacian in bounded domains
    Zoia, A.
    Rosso, A.
    Kardar, M.
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [10] Solution of the space-fractional diffusion equation on bounded domains of superdiffusive phenomena
    Monroy, Diego A.
    Raposo, Ernesto P.
    PHYSICAL REVIEW E, 2024, 110 (05)