FRACTIONAL DIFFUSION ON BOUNDED DOMAINS

被引:78
|
作者
Defterli, Ozlem [1 ,2 ]
D'Elia, Marta [3 ]
Du, Qiang [4 ,5 ]
Gunzburger, Max [6 ]
Lehoucq, Rich [7 ]
Meerschaert, Mark M. [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Ankaya Univ, Dept Math & Comp Sci, TR-06790 Ankara, Turkey
[3] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, Albuquerque, NM 87123 USA
[4] Columbia Univ, Fu Fdn Sch Engn & Appl Sci, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[6] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32309 USA
[7] Sandia Natl Labs, Computat Math, Albuquerque, NM 87123 USA
基金
美国国家科学基金会;
关键词
fractional diffusion; boundary value problem; nonlocal diffusion; well-posed equation; FINITE-DIFFERENCE APPROXIMATIONS; VOLUME-CONSTRAINED PROBLEMS; NONLOCAL DIFFUSION; NUMERICAL-SOLUTION; VECTOR CALCULUS; DISPERSION; EQUATIONS;
D O I
10.1515/fca-2015-0023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.
引用
收藏
页码:342 / 360
页数:19
相关论文
共 50 条
  • [41] Correction to: Fractional Schrödinger Equation in Bounded Domains and Applications
    Mohamed Ben Chrouda
    Mediterranean Journal of Mathematics, 2018, 15
  • [42] ROBUST BPX PRECONDITIONER FOR FRACTIONAL LAPLACIANS ON BOUNDED LIPSCHITZ DOMAINS
    Borthagaray, Juan Pablo
    Nochetto, Ricardo H.
    Wu, Shuonan
    Xu, Jinchao
    MATHEMATICS OF COMPUTATION, 2023, 92 (344) : 2439 - 2473
  • [43] POSITIVE BLOWUP SOLUTIONS FOR SOME FRACTIONAL SYSTEMS IN BOUNDED DOMAINS
    Alsaedi, Ramzi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [44] Convergence of fractional diffusion processes in extension domains
    Simone Creo
    Maria Rosaria Lancia
    Paola Vernole
    Journal of Evolution Equations, 2020, 20 : 109 - 139
  • [45] Convergence of fractional diffusion processes in extension domains
    Creo, Simone
    Lancia, Maria Rosaria
    Vernole, Paola
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 109 - 139
  • [46] Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains
    Ye, H.
    Liu, F.
    Anh, V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 652 - 660
  • [47] Modeling Long-Distance Forward and Backward Diffusion Processes in Tracer Transport Using the Fractional Laplacian on Bounded Domains
    Li, Zhipeng
    Tang, Hongwu
    Yuan, Saiyu
    Zhang, Huiming
    Kong, Lingzhong
    Sun, HongGuang
    FRACTAL AND FRACTIONAL, 2023, 7 (11)
  • [48] A global solution for a reaction-diffusion equation on bounded domains
    Khellat, Farhad
    Khormizi, Mahmud Beyk
    Applied Mathematics and Nonlinear Sciences, 2018, 3 (01) : 15 - 22
  • [50] Behaviour near extinction for the Fast Diffusion Equation on bounded domains
    Bonforte, Matteo
    Grillo, Gabriele
    Vazquez, Juan Luis
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (01): : 1 - 38