FRACTIONAL DIFFUSION ON BOUNDED DOMAINS

被引:78
|
作者
Defterli, Ozlem [1 ,2 ]
D'Elia, Marta [3 ]
Du, Qiang [4 ,5 ]
Gunzburger, Max [6 ]
Lehoucq, Rich [7 ]
Meerschaert, Mark M. [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Ankaya Univ, Dept Math & Comp Sci, TR-06790 Ankara, Turkey
[3] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, Albuquerque, NM 87123 USA
[4] Columbia Univ, Fu Fdn Sch Engn & Appl Sci, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[6] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32309 USA
[7] Sandia Natl Labs, Computat Math, Albuquerque, NM 87123 USA
基金
美国国家科学基金会;
关键词
fractional diffusion; boundary value problem; nonlocal diffusion; well-posed equation; FINITE-DIFFERENCE APPROXIMATIONS; VOLUME-CONSTRAINED PROBLEMS; NONLOCAL DIFFUSION; NUMERICAL-SOLUTION; VECTOR CALCULUS; DISPERSION; EQUATIONS;
D O I
10.1515/fca-2015-0023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.
引用
收藏
页码:342 / 360
页数:19
相关论文
共 50 条