FRACTIONAL DIFFUSION ON BOUNDED DOMAINS

被引:78
|
作者
Defterli, Ozlem [1 ,2 ]
D'Elia, Marta [3 ]
Du, Qiang [4 ,5 ]
Gunzburger, Max [6 ]
Lehoucq, Rich [7 ]
Meerschaert, Mark M. [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Ankaya Univ, Dept Math & Comp Sci, TR-06790 Ankara, Turkey
[3] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, Albuquerque, NM 87123 USA
[4] Columbia Univ, Fu Fdn Sch Engn & Appl Sci, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[5] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[6] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32309 USA
[7] Sandia Natl Labs, Computat Math, Albuquerque, NM 87123 USA
基金
美国国家科学基金会;
关键词
fractional diffusion; boundary value problem; nonlocal diffusion; well-posed equation; FINITE-DIFFERENCE APPROXIMATIONS; VOLUME-CONSTRAINED PROBLEMS; NONLOCAL DIFFUSION; NUMERICAL-SOLUTION; VECTOR CALCULUS; DISPERSION; EQUATIONS;
D O I
10.1515/fca-2015-0023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.
引用
收藏
页码:342 / 360
页数:19
相关论文
共 50 条
  • [21] Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains
    Xiaochuan Tian
    Qiang Du
    Max Gunzburger
    Advances in Computational Mathematics, 2016, 42 : 1363 - 1380
  • [22] Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains
    Tian, Xiaochuan
    Du, Qiang
    Gunzburger, Max
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (06) : 1363 - 1380
  • [23] Fractional potential: A new perspective on the fractional Laplacian problem on bounded domains
    Feng, Libo
    Turner, Ian
    Moroney, Timothy
    Liu, Fawang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [24] Nonlinear diffusion equations on bounded fractal domains
    Hu, JX
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (02): : 331 - 345
  • [25] PERTURBATION THEOREMS FOR FRACTIONAL CRITICAL EQUATIONS ON BOUNDED DOMAINS
    Alghanemi, Azeb
    Chtioui, Hichem
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 111 (02) : 159 - 178
  • [26] The Noncommutative Fractional Fourier Law in Bounded and Unbounded Domains
    Colombo, Fabrizio
    Gonzalez, Denis Deniz
    Pinton, Stefano
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (07)
  • [27] Fractional operators on the bounded symmetric domains of the Bergman spaces
    Ibrahim, Rabha W.
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2024, 9 (02): : 3810 - 3835
  • [28] Existence and multiplicity results for the fractional Laplacian in bounded domains
    Mugnai, Dimitri
    Pagliardini, Dayana
    ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (02) : 111 - 124
  • [29] The Noncommutative Fractional Fourier Law in Bounded and Unbounded Domains
    Fabrizio Colombo
    Denis Deniz González
    Stefano Pinton
    Complex Analysis and Operator Theory, 2021, 15
  • [30] Fractional Schrödinger Equation in Bounded Domains and Applications
    Mohamed Ben Chrouda
    Mediterranean Journal of Mathematics, 2017, 14