Cacti with maximal general sum-connectivity index

被引:0
|
作者
Shahid Zaman
机构
[1] University of Sialkot,Department of Mathematics
[2] Central China Normal University,Faculty of Mathematics and Statistics
关键词
General sum-connectivity index; Cactus; Pendent vertex; Perfect matching; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let V(G) and E(G) be, respectively, the vertex set and edge set of a graph G. The general sum-connectivity index of a graph G is denoted by χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document} and is defined as ∑uv∈E(G)(du+dv)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{uv\in E(G)}(d_u+d_v)^\alpha $$\end{document}, where uv is an edge that connect the vertices u,v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v\in V(G)$$\end{document}, du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_u$$\end{document} is the degree of a vertex u and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is any non-zero real number. A cactus is a graph in which any two cycles have at most one common vertex. Let Cn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}_{n,t}$$\end{document} denote the class of all cacti with order n and t pendant vertices. In this paper, a maximum general sum-connectivity index (χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document}, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}) of a cacti graph with order n and t pendant vertices is considered. We determine the maximum general sum-connectivity index of n-vertex cacti graph. Based on our obtained results, we characterize the cactus with a perfect matching having the maximum general sum-connectivity index.
引用
收藏
页码:147 / 160
页数:13
相关论文
共 50 条
  • [21] On General Sum-Connectivity Index of Benzenoid Systems and Phenylenes
    Chen, Shubo
    Xia, Fangli
    Yang, Jianguang
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 1 (02): : 97 - 104
  • [22] Bounds for the general sum-connectivity index of composite graphs
    Akhter, Shehnaz
    Imran, Muhammad
    Raza, Zahid
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [23] Sum-connectivity index of a graph
    Das, Kinkar Ch.
    Das, Sumana
    Zhou, Bo
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (01) : 47 - 54
  • [24] Sum-connectivity index of a graph
    Kinkar Ch. Das
    Sumana Das
    Bo Zhou
    Frontiers of Mathematics in China, 2016, 11 : 47 - 54
  • [25] On The Sum-Connectivity Index Of Trees
    Alyar, Sattar
    Khoeilar, Rana
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 250 - 252
  • [26] General sum-connectivity index of a graph and its line graph
    Chen, Xiaohong
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 443
  • [27] General sum-connectivity index of unicyclic graphs with given diameter
    Alfuraidan, Monther Rashed
    Das, Kinkar Chandra
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE APPLIED MATHEMATICS, 2021, 295 : 39 - 46
  • [28] Properties of Total Transformation Graphs for General Sum-Connectivity Index
    Rani, Anam
    Imran, Muhammad
    Razzaque, Asima
    Ali, Usman
    Complexity, 2021, 2021
  • [29] Ordering Trees Having Small General Sum-Connectivity Index
    Tomescu, Ioan
    Kanwal, Salma
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (03) : 535 - 548
  • [30] Extremal polyomino chains with respect to general sum-connectivity index
    An, Mingqiang
    Xiong, Liming
    ARS COMBINATORIA, 2017, 131 : 255 - 271