Extremal polyomino chains with respect to general sum-connectivity index

被引:0
|
作者
An, Mingqiang [1 ,2 ]
Xiong, Liming [1 ]
机构
[1] Beijing Inst Technol, Sch Math, Beijing 100081, Peoples R China
[2] Tianjin Univ Sci & Technol, Coll Sci, Tianjin 300457, Peoples R China
基金
北京市自然科学基金;
关键词
General sum-connectivity index; Polyomino chain; ZAGREB INDEXES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a (molecular) graph G, the general sum-connectivity index x alpha(G) is defined as the sum of the weights [d(u) + d(v)](alpha) of all edges uv of G, where d(u) (or d(v)) denotes the degree of a vertex u (or v) in G and alpha is an arbitrary real number. In this paper, we give an efficient formula for computing the general sum-connectivity index of polyomino chains and characterize the extremal polyomino chains with respect to this index, which generalizes one of the main results in [Z. Yarahmadi, A. Ashrafi, S. Moradi, Extremal polyomino chains with respect to Zagreb indices, Appl. Math. Lett. 25 (2012): 166-171].
引用
收藏
页码:255 / 271
页数:17
相关论文
共 50 条
  • [1] A note on polyomino chains with extremum general sum-connectivity index
    Ali, Akbar
    Idrees, Tahir
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) : 81 - 91
  • [2] Extremal polyomino chains with respect to general RandiA‡ index
    An, Mingqiang
    Xiong, Liming
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 635 - 647
  • [3] Extremal polyomino chains with respect to general Randić index
    Mingqiang An
    Liming Xiong
    Journal of Combinatorial Optimization, 2016, 31 : 635 - 647
  • [4] General harmonic index and general sum connectivity index of polyomino chains and nanotubes
    Yan, Li
    Gao, Wei
    Li, Junsheng
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (10) : 3940 - 3944
  • [5] On general sum-connectivity index
    Bo Zhou
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2010, 47 : 210 - 218
  • [6] On general sum-connectivity index
    Zhou, Bo
    Trinajstic, Nenad
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (01) : 210 - 218
  • [7] Extremal Values of the General Harmonic Index and General Sum-Connectivity Index of f-Benzenoids
    Ye, Qingfang
    Li, Fengwei
    Ye, Ruixuan
    POLYCYCLIC AROMATIC COMPOUNDS, 2022, 42 (05) : 2815 - 2833
  • [8] Two-Matchings with Respect to the General Sum-Connectivity Index of Trees
    Cruz, Roberto
    Lopez, Mateo
    Rada, Juan
    AXIOMS, 2024, 13 (10)
  • [9] Extremal k-generalized quasi trees for general sum-connectivity index
    Jamil, Muhammad Kamran
    Tomescu, Ioan
    Imran, Muhammad
    Jamil, Muhammad Kamran (m.kamran.sms@gmail.com); Jamil, Muhammad Kamran (m.kamran.sms@gmail.com), 2020, Politechnica University of Bucharest (82): : 101 - 106
  • [10] Progress in General Sum-Connectivity Index
    Peng Shuying
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 2185 - 2188