Cacti with maximal general sum-connectivity index

被引:0
|
作者
Shahid Zaman
机构
[1] University of Sialkot,Department of Mathematics
[2] Central China Normal University,Faculty of Mathematics and Statistics
关键词
General sum-connectivity index; Cactus; Pendent vertex; Perfect matching; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let V(G) and E(G) be, respectively, the vertex set and edge set of a graph G. The general sum-connectivity index of a graph G is denoted by χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document} and is defined as ∑uv∈E(G)(du+dv)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{uv\in E(G)}(d_u+d_v)^\alpha $$\end{document}, where uv is an edge that connect the vertices u,v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v\in V(G)$$\end{document}, du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_u$$\end{document} is the degree of a vertex u and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is any non-zero real number. A cactus is a graph in which any two cycles have at most one common vertex. Let Cn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}_{n,t}$$\end{document} denote the class of all cacti with order n and t pendant vertices. In this paper, a maximum general sum-connectivity index (χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document}, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}) of a cacti graph with order n and t pendant vertices is considered. We determine the maximum general sum-connectivity index of n-vertex cacti graph. Based on our obtained results, we characterize the cactus with a perfect matching having the maximum general sum-connectivity index.
引用
收藏
页码:147 / 160
页数:13
相关论文
共 50 条
  • [31] A note on polyomino chains with extremum general sum-connectivity index
    Ali, Akbar
    Idrees, Tahir
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) : 81 - 91
  • [32] Properties of Total Transformation Graphs for General Sum-Connectivity Index
    Rani, Anam
    Imran, Muhammad
    Razzaque, Asima
    Ali, Usman
    COMPLEXITY, 2021, 2021
  • [33] General Atom-Bond Sum-Connectivity Index of Graphs
    Albalahi, Abeer M.
    Milovanovic, Emina
    Ali, Akbar
    MATHEMATICS, 2023, 11 (11)
  • [34] General sum-connectivity index and general Randic index of trees with given maximum degree
    Swartz, Elize
    Vetrik, Tomas
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 181 - 188
  • [35] Sum-connectivity index of molecular trees
    Rundan Xing
    Bo Zhou
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2010, 48 : 583 - 591
  • [36] The Sum-Connectivity Index - An Additive Variant of the Randic Connectivity Index
    Lucic, Bono
    Sovic, Ivan
    Batista, Jadranko
    Skala, Karolj
    Plavsic, Dejan
    Vikic-Topic, Drazen
    Beslo, Drago
    Nikolic, Sonja
    Trinajstic, Nenad
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2013, 9 (02) : 184 - 194
  • [37] On Sum-Connectivity Index of Bicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (01) : 101 - 117
  • [38] Extremal Values of the General Harmonic Index and General Sum-Connectivity Index of f-Benzenoids
    Ye, Qingfang
    Li, Fengwei
    Ye, Ruixuan
    POLYCYCLIC AROMATIC COMPOUNDS, 2022, 42 (05) : 2815 - 2833
  • [39] EXACT FORMULAE OF GENERAL SUM-CONNECTIVITY INDEX FOR SOME GRAPH OPERATIONS
    Akhter, Shehnaz
    Farooq, Rashid
    Pirzada, Shariefuddin
    MATEMATICKI VESNIK, 2018, 70 (03): : 267 - 282
  • [40] A Note on the General Sum-Connectivity Index of a Graph and Its Line Graph
    Su, Zhenhua
    Tang, Zikai
    Chen, Shubo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2024, 92 (03)