Cacti with maximal general sum-connectivity index

被引:0
|
作者
Shahid Zaman
机构
[1] University of Sialkot,Department of Mathematics
[2] Central China Normal University,Faculty of Mathematics and Statistics
关键词
General sum-connectivity index; Cactus; Pendent vertex; Perfect matching; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let V(G) and E(G) be, respectively, the vertex set and edge set of a graph G. The general sum-connectivity index of a graph G is denoted by χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document} and is defined as ∑uv∈E(G)(du+dv)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{uv\in E(G)}(d_u+d_v)^\alpha $$\end{document}, where uv is an edge that connect the vertices u,v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v\in V(G)$$\end{document}, du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_u$$\end{document} is the degree of a vertex u and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is any non-zero real number. A cactus is a graph in which any two cycles have at most one common vertex. Let Cn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}_{n,t}$$\end{document} denote the class of all cacti with order n and t pendant vertices. In this paper, a maximum general sum-connectivity index (χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document}, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}) of a cacti graph with order n and t pendant vertices is considered. We determine the maximum general sum-connectivity index of n-vertex cacti graph. Based on our obtained results, we characterize the cactus with a perfect matching having the maximum general sum-connectivity index.
引用
收藏
页码:147 / 160
页数:13
相关论文
共 50 条
  • [41] On General Sum-Connectivity Index of Trees of Fixed Maximum Degree and Order
    Raza, Zahid
    Balachandran, Selvaraj
    Elumalai, Suresh
    Ali, Akbar
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (03) : 643 - 658
  • [42] The sharp bounds on general sum-connectivity index of four operations on graphs
    Akhter, Shehnaz
    Imran, Muhammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [43] General sum-connectivity index of unicyclic graphs with given maximum degree
    Swartz, Elize
    Vetrik, Tomas
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 238 - 249
  • [44] On the general sum-connectivity index of trees with given number of pendent vertices
    Cui, Qing
    Zhong, Lingping
    DISCRETE APPLIED MATHEMATICS, 2017, 222 : 213 - 221
  • [45] Sum-connectivity index of molecular trees
    Xing, Rundan
    Zhou, Bo
    Trinajstic, Nenad
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (03) : 583 - 591
  • [46] Two-Matchings with Respect to the General Sum-Connectivity Index of Trees
    Cruz, Roberto
    Lopez, Mateo
    Rada, Juan
    AXIOMS, 2024, 13 (10)
  • [47] Computing bounds for the general sum-connectivity index of some graph operations
    Akhter, S.
    Farooq, R.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (02): : 147 - 160
  • [48] Two-tree graphs with maximum general sum-connectivity index
    Khoeilar, R.
    Shooshtari, H.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (03)
  • [49] The Minimum General Sum-Connectivity Index of Trees with Given Matching Number
    Lingping Zhong
    Qiuping Qian
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1527 - 1544