A Semi-Lagrangian Spectral Method for the Vlasov–Poisson System Based on Fourier, Legendre and Hermite Polynomials

被引:0
|
作者
Lorella Fatone
Daniele Funaro
Gianmarco Manzini
机构
[1] Università degli Studi di Camerino,Dipartimento di Matematica
[2] Università degli Studi di Modena e Reggio Emilia,Dipartimento di Scienze Chimiche e Geologiche
[3] Los Alamos National Laboratory,Group T
关键词
Spectral methods; Semi-Lagrangian methods; High-order; Hermite functions; Vlasov–Poisson equations; Mass conservation; 65M70; 33C45; 82D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we apply a semi-Lagrangian spectral method for the Vlasov–Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space–velocity domain with a BDF time-stepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.
引用
收藏
页码:333 / 360
页数:27
相关论文
共 50 条
  • [1] A Semi-Lagrangian Spectral Method for the Vlasov-Poisson System Based on Fourier, Legendre and Hermite Polynomials
    Fatone, Lorella
    Funaro, Daniele
    Manzini, Gianmarco
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2019, 1 (03) : 333 - 360
  • [2] A generalized Fourier–Hermite method for the Vlasov–Poisson system
    Katharina Kormann
    Anna Yurova
    BIT Numerical Mathematics, 2021, 61 : 881 - 909
  • [3] Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system
    Pinto, Martin Campos
    Mehrenberger, Michel
    NUMERISCHE MATHEMATIK, 2008, 108 (03) : 407 - 444
  • [4] Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system
    Martin Campos Pinto
    Michel Mehrenberger
    Numerische Mathematik, 2008, 108 : 407 - 444
  • [5] A 'metric' semi-Lagrangian Vlasov-Poisson solver
    Colombi, Stephane
    Alard, Christophe
    JOURNAL OF PLASMA PHYSICS, 2017, 83 (03)
  • [6] Error analysis of Fourier-Legendre and Fourier-Hermite spectral-Galerkin methods for the Vlasov-Poisson system
    Zhang, Xiaolong
    Wang, Li-Lian
    Jia, Hongli
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (06) : 3637 - 3668
  • [7] A CONSERVATIVE SEMI-LAGRANGIAN HYBRID HERMITE WENO SCHEME FOR LINEAR TRANSPORT EQUATIONS AND THE NONLINEAR VLASOV-POISSON SYSTEM
    Zheng, Nanyi
    Cai, Xiaofeng
    Qiu, Jing-Mei
    Qiu, Jianxian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3580 - A3606
  • [8] A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system
    Sirajuddin, David
    Hitchon, William N. G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 392 : 619 - 665
  • [9] A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system
    Manzini, G.
    Delzanno, G. L.
    Vencels, J.
    Markidis, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 317 : 82 - 107
  • [10] Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system
    Fatone, L.
    Funaro, D.
    Manzini, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 384 : 349 - 375