A Semi-Lagrangian Spectral Method for the Vlasov–Poisson System Based on Fourier, Legendre and Hermite Polynomials

被引:0
|
作者
Lorella Fatone
Daniele Funaro
Gianmarco Manzini
机构
[1] Università degli Studi di Camerino,Dipartimento di Matematica
[2] Università degli Studi di Modena e Reggio Emilia,Dipartimento di Scienze Chimiche e Geologiche
[3] Los Alamos National Laboratory,Group T
关键词
Spectral methods; Semi-Lagrangian methods; High-order; Hermite functions; Vlasov–Poisson equations; Mass conservation; 65M70; 33C45; 82D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we apply a semi-Lagrangian spectral method for the Vlasov–Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space–velocity domain with a BDF time-stepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.
引用
收藏
页码:333 / 360
页数:27
相关论文
共 50 条
  • [31] Finite Spectral Semi-Lagrangian Method for Incompressible Flows
    Li Shao-Wu
    Wang Jian-Ping
    CHINESE PHYSICS LETTERS, 2012, 29 (02)
  • [32] A massively parallel semi-Lagrangian solver for the six-dimensional Vlasov-Poisson equation
    Kormann, Katharina
    Reuter, Klaus
    Rampp, Markus
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2019, 33 (05): : 924 - 947
  • [33] UNIFORMLY ACCURATE FORWARD SEMI-LAGRANGIAN METHODS FOR HIGHLY OSCILLATORY VLASOV-POISSON EQUATIONS
    Crouseilles, Nicolas
    Lemou, Mohammed
    Mehats, Florian
    Zhao, Xiaofei
    MULTISCALE MODELING & SIMULATION, 2017, 15 (02): : 723 - 744
  • [34] Highly accurate monotonicity-preserving Semi-Lagrangian scheme for Vlasov-Poisson simulations
    Yang, Chang
    Mehrenberger, Michel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
  • [35] A MULTIFIDELITY MACHINE LEARNING BASED SEMI-LAGRANGIAN FINITE VOLUME SCHEME FOR LINEAR TRANSPORT EQUATIONS AND THE NONLINEAR VLASOV--POISSON SYSTEM
    Chen, Yongsheng
    Guo, Wei
    Zhong, Xinghui
    MULTISCALE MODELING & SIMULATION, 2024, 22 (04): : 1421 - 1448
  • [36] A semi-Lagrangian deterministic solver for the semiconductor Boltzmann-Poisson system
    Carrillo, Jose A.
    Majorana, Armando
    Vecil, Francesco
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (05) : 1027 - 1054
  • [37] Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations
    Respaud, Thomas
    Sonnendruecker, Eric
    NUMERISCHE MATHEMATIK, 2011, 118 (02) : 329 - 366
  • [38] Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations
    Thomas Respaud
    Eric Sonnendrücker
    Numerische Mathematik, 2011, 118 : 329 - 366
  • [39] A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations
    Christlieb, Andrew
    Guo, Wei
    Morton, Maureen
    Qiu, Jing-Mei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 267 : 7 - 27
  • [40] Convergence of a high-order semi-lagrangian scheme with propagation of gradients for the one-dimensional Vlasov-Poisson system
    Besse, Nicolas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) : 639 - 670