A Semi-Lagrangian Spectral Method for the Vlasov–Poisson System Based on Fourier, Legendre and Hermite Polynomials

被引:0
|
作者
Lorella Fatone
Daniele Funaro
Gianmarco Manzini
机构
[1] Università degli Studi di Camerino,Dipartimento di Matematica
[2] Università degli Studi di Modena e Reggio Emilia,Dipartimento di Scienze Chimiche e Geologiche
[3] Los Alamos National Laboratory,Group T
关键词
Spectral methods; Semi-Lagrangian methods; High-order; Hermite functions; Vlasov–Poisson equations; Mass conservation; 65M70; 33C45; 82D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we apply a semi-Lagrangian spectral method for the Vlasov–Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space–velocity domain with a BDF time-stepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.
引用
收藏
页码:333 / 360
页数:27
相关论文
共 50 条
  • [41] A semi-Lagrangian double Fourier method for the shallow water equations on the sphere
    Layton, AT
    Spotz, WF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 189 (01) : 180 - 196
  • [42] ON THE CONVERGENCE OF DISCONTINUOUS GALERKIN/HERMITE SPECTRAL METHODS FOR THE VLASOV-POISSON SYSTEM
    Bessemoulin-Chatard, Marianne
    Filbet, Francis
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (04) : 1664 - 1688
  • [43] An efficient energy conserving semi-Lagrangian kinetic scheme for the Vlasov-Ampere system
    Liu, Hongtao
    Cai, Xiaofeng
    Cao, Yong
    Lapenta, Giovanni
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 492
  • [44] An efficient energy conserving semi-Lagrangian kinetic scheme for the Vlasov-Maxwell system
    Liu, Hongtao
    Lu, Chang
    Xia, Guangqing
    Keppens, Rony
    Lapenta, Giovanni
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 529
  • [45] Convergence of a semi-Lagrangian scheme for the reduced Vlasov–Maxwell system for laser–plasma interaction
    Mihai Bostan
    Nicolas Crouseilles
    Numerische Mathematik, 2009, 112 : 169 - 195
  • [46] A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations
    Xu, Jin
    Xiu, Dongbin
    Karniadakis, George Em
    JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 585 - 597
  • [47] Flow past a cylinder using a semi-Lagrangian spectral element method
    Phillips, RM
    Phillips, TN
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 251 - 257
  • [48] A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations
    Jin Xu
    Dongbin Xiu
    George Em Karniadakis
    Journal of Scientific Computing, 2002, 17 : 585 - 597
  • [49] An explicit semi-Lagrangian, spectral method for solution of Lagrangian transport equations in Eulerian-Lagrangian formulations
    Natarajan, Hareshram
    Jacobs, Gustaaf B.
    COMPUTERS & FLUIDS, 2020, 207 (207)
  • [50] Stability of nonlinear Vlasov-Poisson equilibria through spectral deformation and Fourier-Hermite expansion
    Siminos, Evangelos
    Benisti, Didier
    Gremillet, Laurent
    PHYSICAL REVIEW E, 2011, 83 (05):