A Semi-Lagrangian Spectral Method for the Vlasov–Poisson System Based on Fourier, Legendre and Hermite Polynomials

被引:0
|
作者
Lorella Fatone
Daniele Funaro
Gianmarco Manzini
机构
[1] Università degli Studi di Camerino,Dipartimento di Matematica
[2] Università degli Studi di Modena e Reggio Emilia,Dipartimento di Scienze Chimiche e Geologiche
[3] Los Alamos National Laboratory,Group T
关键词
Spectral methods; Semi-Lagrangian methods; High-order; Hermite functions; Vlasov–Poisson equations; Mass conservation; 65M70; 33C45; 82D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we apply a semi-Lagrangian spectral method for the Vlasov–Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space–velocity domain with a BDF time-stepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.
引用
收藏
页码:333 / 360
页数:27
相关论文
共 50 条